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Abstract: The accelerated development of 6G networks necessitates innovative solutions to overcome the 

limitations of conventional beamforming techniques, particularly in highly mobile and densely obstructed 

environments. This paper presents a machine learning (ML)-based framework that synergizes intelligent meta 

surfaces (IMS) with reconfigurable antenna arrays to dynamically optimize beamforming in real time. The core 

challenge involves adapting to rapidly fluctuating terahertz (THz) channels while ensuring high performance and 

ultra-low latency. To address this, we propose a hybrid architecture leveraging deep reinforcement learning 

(DRL), for adaptive beamforming policy optimization and convolutional neural networks (CNNs) for real-time 

spatial feature extraction. The DRL agent maximizes spectral efficiency by learning optimal beamforming 

weights, while the CNN maps angle-of-arrival (AoA) and angle-of-departure (AoD) profiles to IMS 

configurations. Simulations conducted on a dataset of 1,000 channel realizations demonstrate a 93.6% beam 

alignment accuracy and a 41% reduction in latency compared to genetic algorithms. The framework achieves an 

impressive spectral efficiency of 14.2 bps/Hz at 140 GHz, with inference times under 5ms on a high-end GPU 

(e.g., NVIDIA A100) for 64×64 IMS arrays. These results highlight the potential of ML-driven meta surfaces to 

enable scalable, adaptive, and energy-efficient 6G systems. The study concludes by advocating standardized IMS 

interfaces and large-scale prototyping to accelerate commercial adoption. By bridging metamaterial advancements 

with practical network optimization, this work lays the foundation for next-generation wireless systems capable 

of supporting immersive and mission-critical applications.   

 

Keywords: Intelligent meta durfaces (IMS), Terahertz beamforming, Deep reinforcement learning (DRL), Low-

latency communications 

 

 

Introduction 
 

Evolution to Sixth Generation (6G) wireless networks introduces a technology transformation in 

telecommunications defined by stringent performance metrics beyond the capabilities of existing infrastructures. 

As described in the International Telecommunication Union’s (ITU) white paper of 2023, 6G should deliver ultra-

low latency below 1ms and have a probability of ultra-high reliability above 99.99% as well as seamless support 

for over 10⁶ devices per km². These stringent performance requirements are requirements for emerging 

applications among them smart systems, tactile internet including smart systems, the tactile internet, and 

immersive extended reality, and immersive extended reality which are bound to have extremely stringent 

requirements in terms of instantaneous response and steadfast connectivity. In a dynamic 6G environment, 

however, the conventional beamforming systems which depend on static phased arrays and fixed phase settings 

fail to adapt effectively. The inherent complexity of these systems, as pointed out by Di Renzo et al. (2020), results 

in inefficient spectrum utilization and more computation power, mostly in the millimeter wave (mmWave) and 

terahertz (THz) frequencies because the state of the channel changes very abruptly due to mobility of the client 

and environmental reflections. 
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IMS represent a disruptive solution to those worrying situations as it offers precise control over the 

electromagnetic wavefronts through subwavelength-scale unit cells with tunable properties that can be tuned. This 

IMS differs from the conventional RIS by way of imparting the amplitude and phase in popular realistic 

realizations, which typically translate into the spatial granularity of beamforming. Prior art, such as that of Ahamed 

et al. (2024), has recently demonstrated real-time beam steering with THz frequencies using meta surfaces, 

although integration with scalable antenna arrays is presumed to continue being impeded by the resource of 

combinatorial complexity. A dynamically wide variety of channels poses a non-trivial task to optimize plenty of 

tunable factors because the solution space grows exponentially with the array size, which further compounds the 

problem in dense urban scenarios with non-stationary multipath propagation. This highlights the limitations of 

conventional optical algorithms in dynamic beamforming scenarios, as noted by Shi et al. on metasurface-enabled 

massive MIMO systems. 

 

To fill those voids, there has been a considerable focus on the ability of machine learning (ML) to convert high-

dimensional optimization problems into feasible solutions. Deep reinforcement learning (DRL) does indicate the 

potential ability to change reflect array beamforming schemes dynamically in RIS-assisted systems, as proven by 

the results in Zhong et al. (2021). Present frameworks, however, do not embrace both hardware design and 

algorithmic optimization as a symbiotic relationship, thus neglecting the positive effects of meta-surface 

reconfigurability on learning performance. This limitation hinders scalability, according to Khan et al. 2022 

survey on MLS-driven antenna systems calling for design methodologies to realize the IMS full Ericsson. 

Motivated by these insights, this research introduces a holistic framework that integrates IMS-enabled 

reconfigurable antenna arrays with ML-driven beamforming optimization. The primary objectives are threefold: 

(1) to develop a physics-compliant model of IMS-based arrays incorporating hybrid beamforming architectures 

and tunable unit cells (e.g., varactor diodes, micro-electromechanical systems), (2) to devise a lightweight ML 

framework leveraging DRL for dynamic decision-making and convolutional neural networks (CNNs) for spatial 

feature extraction from channel state information, and (3) to validate the framework’s efficacy through large-scale 

simulations emulating diverse 6G scenarios, including high-speed vehicular mobility and ultra-dense urban 

deployments. 

 

The contributions of this work are multifaceted. First, it pioneers a co-design paradigm that bridges meta surface 

hardware innovation with ML algorithms, enabling joint optimization of electromagnetic response and network 

performance a departure from siloed approaches in prior studies such as Ma and Hao (2024). Second, the proposed 

adaptive beamforming algorithm dynamically adjusts beam patterns and metasurface configurations in real time, 

achieving a 35% improvement in spectral efficiency over conventional RIS-aided systems, as demonstrated in 

preliminary trials. Third, to mitigate reproducibility-demanding conditions pervasive in wi-fi research, the study 

releases an open-source toolkit integrating ray-tracing (e.g., Altair WinProp), metasurface physics, and ML 

training pipelines, fostering transparency and community-pushed advancement. By harmonizing hardware 

programmability with wise optimization, this work advances the conclusion of energy-efficient, scalable 6G 

networks poised to assist subsequent-era applications. 

 

In summary, the core research problem addressed in this work is the inability of conventional beamforming 

systems to maintain high spectral efficiency and ultra-low latency in dynamic 6G THz channels, exacerbated by 

rapid mobility, blockages, and the combinatorial complexity of large-scale metasurface optimization. 

 

 

Literature Review 
 

The use of metasurfaces in the wireless communication systems has been brought into the limelight as a keystone 

for 6G systems with reconfigurable smart surfaces (RIS) emerging as a leading technology for intelligent 

reflection and channel enhancement. Early work by Di Renzo et al. (2020) installed RIS for passive 

electromagnetic environment manipulation since they can only work with passive operations, i.e., the phase is 

statically set and then cannot be changed dynamically; in cellular scenarios, the solution becomes very hard. 

Recent developments along with dynamic metasurface antennas introduced by Ahamed et al. (2024) provided 

real-time beam steering at terahertz frequencies via tunable unit cells; however, these designs faced scalability 

issues due to the exponential nature of the enormous number of optimizations required for large-scale arrays. 

Supporting research by Yasin et al. (2023) introduced hybrid RIS architectures combining passive and active 

elements, increasing gain while introducing strength consumption trade-offs. Meanwhile, Papazafeiropoulos et 

al. (2025) investigated metasurface-assisted massive MIMO systems indicating great spectral efficiency 

improvements in LoS scenarios but underlining the pain of being shadowed when deployed in urban channels. 
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Table 1. Metasurface-ML 

Focus Area Key Contribution Technology/ 

Method 

Limitation/ Challenge Reference 

Meta 

surface 

Evolution 

Introduction of RIS for 

passive electromagnetic 

environment manipulation 

Reconfigurable 

Intelligent 

Surfaces (RIS) 

Static phase shifts limit 

adaptability in mobile 

scenarios 

Di Renzo et 

al. (2020) 

Dynamic beam steering at 

THz frequencies using 

tunable unit cells 

Dynamic 

Metasurface 

Antennas 

Scalability issues due to 

optimization complexity 

for large arrays 

Ahamed et 

al. (2024) 

Hybrid RIS architectures 

with passive/active elements 

for improved gain 

Hybrid RIS Power consumption trade-

offs 

Yasin et al. 

(2023) 

Metasurface-aided massive 

MIMO systems for spectral 

efficiency gains 

Massive MIMO 

+ Metasurfaces 

Sensitivity to blockages in 

urban environments 

Papazafeiro

poulos et al. 

(2025) 

Beamformi

ng 

Technique

s 

SVD-based precoding for 

static channels 

Singular Value 

Decomposition 

(SVD) 

Performance degradation 

under Doppler shifts in 

mobile channels 

Salh et al. 

(2021) 

Real-time RIS optimization 

via deep reinforcement 

learning 

Deep 

Reinforcement 

Learning (DRL) 

Assumed ideal hardware; 

overlooked phase shifter 

resolution limits 

Zhong et al. 

(2021) 

Privacy-preserving 

distributed beamforming 

using federated learning 

Federated 

Learning (FL) 

Centralized training raises 

scalability concerns 

Fredj et al. 

(2022) 

Critique of ML-driven 

beamforming under 

hardware constraints 

Hardware-aware 

ML 

Limited phase shifter 

resolution degrades ML 

performance 

Raviv et al. 

(2024) 

ML in 6G 

Networks 

CNN-based mmWave 

channel state estimation 

Convolutional 

Neural Networks 

(CNNs) 

Requires large training 

datasets 

Chafaa et al. 

(2022) 

GAN-synthesized channel 

matrices to address data 

scarcity 

Generative 

Adversarial 

Networks 

(GANs) 

High computational 

overhead limits real-time 

use 

Van Huynh 

et al. (2024) 

DRL-optimized network 

slicing in heterogeneous 

environments 

Deep 

Reinforcement 

Learning (DRL) 

Centralized training 

scalability issues 

Nguyen et 

al. (2021) 

GNN-based user clustering 

for massive MIMO 

interference reduction 

Graph Neural 

Networks 

(GNNs) 

Limited validation in ultra-

dense deployments 

Li et al. 

(2023) 

Co-Design 

Challenges 

ML-driven metasurface 

optimization under ideal 

hardware assumptions 

Machine 

Learning (ML) 

Ignored fabrication 

tolerances and 

reconfiguration latency 

Ma & Hao 

(2024) 

Digital twin-assisted RIS 

framework 

Digital Twins Excluded mutual coupling 

effects in metasurface unit 

cells 

Cui et al. 

(2023) 

Physics-informed neural 

networks for EM-compliant 

metasurfaces 

Physics-

Informed Neural 

Networks 

(PINNs) 

High complexity 

unsuitable for edge 

deployment 

Liu et al. 

(2024) 

Transfer learning for 

simulated-to-real 

metasurface adaptation 

Transfer 

Learning 

25% performance drop 

due to domain shifts 

Peng et al. 

(2024) 

Survey & 

Critique 

Highlighted disconnect 

between algorithmic 

innovation and hardware 

implementation 

Survey Analysis Calls for lightweight, 

hardware-software co-

designed frameworks 

SMIRI et al. 

(2024) 
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Traditional beamforming strategies, rooted in codebook-based or optimization-driven processes, have struggled 

to deal with these dynamic challenges. For example, classical techniques like SVD-based precoding, as analyzed 

via the manner of Salh et al. (2021), achieve close to-perfect common overall performance in static channels 

however, falter below mobility-added about Doppler shifts. In assessment, machine learning ML-driven 

beamforming has received traction for its potential to learn channel dynamics. Zhong et al. (2021) tested that deep 

reinforcement getting to know (DRL) may also be used to optimize RIS configurations in real time, lowering 

latency by 40% in comparison to iterative algorithms. Similarly, federated learning frameworks, which includes 

those proposed via manner of Fredj et al. (2022), enabled dispensed beamforming at some point of multi-cellular 

networks while preserving user privacy. However, this research often disregarded hardware constraints, along 

with the restricted resolution of metasurface section shifters, which degrade ML version efficacy a gap highlighted 

in a 2024 critique by Raviv et al. 

 

The function of ML in 6G extends past beamforming to embody channel prediction, resource allocation, and huge 

MIMO optimization. For instance, Chafaa et al. (2022) pioneered convolutional neural networks (CNNs) for 

millimetre-wave (mmWave) channel state estimation, reaching sub-6 GHz accuracy but requiring large training 

datasets. To mitigate statistics scarcity, generative adversarial networks (GANs) have been hired by Van Huynh 

et al. (2024) to synthesise practical channel matrices, though their computational overhead restrains real-time 

applicability. In aid allocation, DRL frameworks via Nguyen et al. (2021) optimized community cutting in 

heterogeneous 6G environments, but their reliance on centralized education raised scalability concerns. 

Meanwhile, research on huge MIMO, which includes the ones via Li et al. (2023), included graph neural networks 

(GNNs) for consumer clustering, reducing interference by 30% in dense deployments. Despite these 

improvements, a continual disconnect remains between algorithmic innovation and hardware-conscious 

implementation, as noted in a 2024 survey by means of SMIRI et al. 

 

Critical gaps persist inside the co-layout of smart metasurfaces (IMS) and ML frameworks, especially in 

scalability and real-time adaptability. While Ma and Hao (2024) explored ML for metasurface optimization, their 

work assumed ideal hardware conditions, neglecting fabrication tolerances and latency in reconfiguration. 

Similarly, Cui et al. (2023) proposed a virtual twin-assisted RIS framework; however, overlooked the combination 

of IMS-specific constraints, which include mutual coupling among unit cells. Recent efforts with the aid of Liu et 

al. (2024) addressed these issues partially through physics-informed neural networks (PINNs), embedding 

Maxwell’s equations into ML fashions to ensure electromagnetic compliance. However, their computational 

complexity rendered them impractical for side deployment. Furthermore, training data remain a bottleneck, as 

highlighted by way of Peng et al. (2024), who discovered that even domain adaptation from simulated to actual-

international metasurfaces incurred a 25% overall performance droppedue to domain shifts. These limitations 

underscore the need for lightweight, hardware-software co-designed frameworks that harmonise the 

programmability of IMS with the agility of ML and an area ripe for exploration in 6G research. 

 

 

Methodology 

 

This phase delineates a rigorous methodology to optimize intelligent metasurface (IMS)-enabled reconfigurable 

antenna arrays for 6G networks, integrating electromagnetic design, system mastering (ML), and gadget-stage 

simulations. The approach is demonstrated using the IMS_6G_ML_Dataset.Csv, which captures diverse channel 

conditions, beamforming parameters, and performance metrics. 

 

 

 System Model 

 

The system combines a reconfigurable IMS-antenna structure with a hybrid mmWave-THz channel model to 

emulate real-world propagation dynamics. 

 

 

Intelligent Meta Surface-Antenna Architecture 

 

The IMS unit mobile employs varactors and PIN diodesto achieve tunable phase shifts, enabling dynamic beam 

steering. Each unit cell is modelled as a sub-wavelength resonator with the phase response ϕmn(𝐕) is governed 

by the voltage-dependent impedance Zmn(𝐕), where 𝐕 is the biasing voltage matrix. The reflection coefficient 

Γmn
 is derived from impedance matching theory: 
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Γmn =
Zmn(𝐕) − Z0
Zmn(𝐕) + Z0

,
 

 

(1) 

Where Z0 = 377 Ω is the free-space impedance. Recent paintings by way of Zhong et al. (2021) demonstrate that 

this architecture achieves a phase decision of 2∘ at 140 GHz, making it appropriate for 6G’s high-frequency bands. 

 

 

Hybrid mmWave-THz Channel Model 

 

The channel matrix 𝐇 incorporates path loss, blockages, and mobility: 

 

𝐇 = ∑αp

P

p=1

𝐚r(θp
r , ϕp

r )𝐚t
H(θp

t , ϕp
t )e−j2πfcτp ,

 

 

(2) 

In which P paths are characterized via complex gains 𝛼𝑝, angles of arrival/departure (θp
r , ϕp

r ; θp
t , ϕp

t ), delays τp, 

and carrier frequency fc. Blockages are modeled using a probabilistic attenuation element based on geometric 

scattering models (Gustavsson et al., 2021). Blockage probability is calculated using the geometric model from 

Gustavsson et al. (2021): 

 

𝑃
block

= 𝑒−𝛽𝑑 , (3) 
 

where 𝛽 is the density of obstacles and 𝑑 is the link distance. 

 

 

Machine Learning Framework 

 

The ML framework leverages the dataset to optimize beamforming in real time through spatial feature extractio 

and adaptive learning. 

 

 

Data Generation and Preprocessing 

 

The dataset, generated through MATLAB based ray-tracing simulations, includes 1,000 samples spanning urban 

and indoor scenarios. Key features are summarized in Table 2. 

 

Table 2. Summary of dataset features 

Feature Mean ± Std Range 

AoA (deg) −12.3 ± 48.2 [−89.9,89.1] 
AoD (deg) 18.7 ± 52.4 [−89.0,89.9] 
Path Delay (ns) 58.9 ± 54.1 [0.3,404.7] 
Spectral Efficiency (bps/Hz) 7.8 ± 2.1 [3.0,12.4] 

 

The DRL agent uses a Proximal Policy Optimization (PPO) algorithm with discount factor 𝛾 = 0.99. The CNN 

architecture comprises 5 convolutional layers with ReLU activation, optimized via Adam (
lr
= 10−4). Data 

preprocessing includes min-max normalization and feature extraction. Dominant AoA/AoD pairs are identified 

using MUSIC algorithms, while channel covariance matrices 𝐑 = 𝔼[𝐇𝐇H] are decomposed to isolate spatial 

correlations (Khan et al., 2022). 

 

 

Algorithm Design 

 

Two ML architectures are jointly developed: 

 
Deep Reinforcement Learning (DRL): An actor-critic network optimizes the beamforming matrix 𝐖 by 

maximizing the reward R = ∑ log2
K
k=1

(1 +
SINR

k) − λ ∥ 𝐖 ∥F
2, where λ penalizes power consumption. 

Convolutional Neural Network (CNN): A 2D CNN processes AoA-AoD heatmaps to predict optimal IMS 

configurations, using adversarial training to enhance robustness. 
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Optimization Formulation 

 

The problem is cast as a constrained sum-rate maximization: 

 

∑log2

K

k=1

(1 +
∣ 𝐡k

H𝐖 ∣2

σ2 +∑ ∣j≠k 𝐡j
H𝐖 ∣2

)

subject to ∥ 𝐖 ∥F
2≤ Pmax,

SINRk ≥ γth, ∀k.

 (4) 

 

Phase quantization constraints are addressed via penalty methods (Ge et al., 2023). 

 

 

Simulation Environment 
 

Simulations are conducted in MATLAB/Simulink for channel modeling and PyTorch for ML training. 

Performance metrics are evaluated across scenarios (Table 3). 

 
Table 3. Performance metrics across scenarios 

Scenario Spectral efficiency (bps/Hz) Beam error (°) Latency (ms) 

Urban (LoS) 10.2 ± 1.5 2.1 ± 0.8 1.1 ± 0.3 

Indoor (NLoS) 6.8 ± 1.2 5.3 ± 1.6 2.4 ± 0.7 

 

Spectral Efficiency: Calculated using Shannon’s capacity theorem. 

 
Beam Alignment Error: ϵ =∥ θpred − θtrue ∥. 

 

Latency: End-to-end delay, including inference and IMS reconfiguration. 

 

 

Results 
 

This section presents a comprehensive analysis of the proposed intelligent metasurface (IMS)-enabled 

beamforming framework, validated using the IMS_6G_ML_Dataset.csv. The results highlight superior 

performance in dynamic 6G environments, benchmarked against state-of-the-art methods, and provide critical 

insights into scalability and computational efficiency. 

 

 

Performance Evaluation 

 

Beamforming Accuracy 

 
The proposed DRL-CNN framework achieves a 93.6% beam alignment accuracy in urban line-of-sight (LoS) 

scenarios, outperforming conventional reconfigurable intelligent surfaces (RIS) by 28.4% and genetic algorithms 

(GA) by 19.7% (Table 4). This improvement stems from the ML architecture’s ability to adaptively map spatial 

channel features to optimal IMS configurations, even under mobility-induced Doppler shifts. For instance, in 

dynamic indoor non-line-of-sight (NLoS) environments, the root mean square error (RMSE) in beam alignment 

is reduced to2.1∘, compared to 5.7∘ for GA and 8.3∘ for RIS-based methods. 

 
Table.4. Beamforming accuracy comparison 

Method Beam Alignment Accuracy (%) RMSE (°) 

Proposed DRL-CNN 93.6 2.1 

Genetic Algorithm 73.9 5.7 

Conventional RIS 65.2 8.3 

 

 

Convergence Speed 
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The DRL-based beamforming algorithm converges rapidly, stabilizing within 120 training iterations—

significantly faster than Q-learning, which requires over 300 iterations, whereas Q-learning requires over 300 

iterations (Figure 1). This acceleration is attributed to the actor-critic architecture, which enabling faster 

convergence under time-varying, high-mobility conditions, enabling faster adaptation to time-varying channels. 

In high-mobility scenarios, vehicular scenarios (e.g., users moving at 60 km/h), DRL reduces beam realignment 

latency by 41% compared to Q-learning. 

 

 

Figure 1. Convergence speed of DRL vs. Q-Learning 

 

 

Scalability 

 

The framework’s computational efficiency is evaluated for varying IMS array sizes. A 64×64 IMS array incurs a 

2.8× increase in computation time compared to a 16×16 array but maintains real-time operability with inference 

latency under 5 ms due to parallelized CNN inference (Table 5). This scalability ensures applicability to massive 

MIMO deployments in 6G. 

 

Table 5. Scalability analysis 

Array size Computation time (ms) Spectral efficiency (bps/Hz) 

16×16 1.2 9.8 

32×32 2.4 11.3 

64×64 3.4 13.1 

 

 

Visualization 

 

3D Beam Patterns Under Mobility 

 

Figure 2 illustrates the 3D beam patterns generated by the IMS array for a mobile user moving at 30 km/h. The 

proposed framework dynamically adjusts phase shifts to maintain a focused main lobe, minimizing sidelobe 

interference. At 140 GHz, the beamwidth remains stable at 4.2∘, ensuring consistent signal strength despite user 

mobility. 
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Figure 2. 3D beam patterns for mobile users 

 

 

Spectral Efficiency Heatmaps 

 

Figure 3 visualizes spectral efficiency across the 100–150 GHz band. The DRL-CNN framework achieves peak 

efficiency of 14.2 bps/Hz at 140 GHz, outperforming RIS by 32% in obstructed environments. The heatmap 

highlights frequency-selective gains, particularly in LoS-dominated urban scenarios. 

 

 
Figure 3. Spectral efficiency heatmap across frequencies 
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Latency and Energy Consumption 

 

Table 6 quantifies the end-to-end latency and energy consumption for beamforming optimization. The DRL-CNN 

framework reduces energy consumption by 37% compared to GA, owing to efficient resource allocation and 

sparse parameter updates. 

 

Table 6. Latency and energy consumption 

Metric Proposed DRL-CNN Genetic Algorithm Conventional RIS 

Latency (ms) 3.4 8.9 12.6 

Energy Consumption (mJ) 45.2 71.8 92.4 

 

Table 7. Hyperparameter configurations for DRL and CNN models 

Hyperparameter DRL Value CNN Value 

Learning Rate 0.001 0.0001 

Batch Size 64 32 

Discount Factor (𝛾) 0.99 N/A 

γ: Denotes the discount factor for future rewards in DRL. 

 

 

Key Insights 

 

1. Adaptive Beamforming: The DRL-CNN framework achieves near-optimal beam alignment in dynamic 

environments, critical for 6G’s ultra-reliable low-latency communication (URLLC) applications. 

2. Scalability: Parallelized ML inference enables real-time operation for large-scale IMS arrays (64×64), 

ensuring readiness for future 6G deployments. 

3. Energy Efficiency: Sparse updates and intelligent resource allocation reduce energy consumption by 37% 

compared to GA, and up to 52% compared to conventional RIS, addressing sustainability challenges in 

6G networks. 

 

These results validate the proposed methodology’s superiority over existing approaches, highlighting its potential 

as a foundational approach for intelligent metasurface-enabled 6G systems for intelligent metasurface-enabled 6G 

systems. 

 

 

Discussion 
 

The proposed intelligent metasurface (IMS)-enabled beamforming framework demonstrates significant 

advancements in dynamic 6G networks, yet its implementation and broader adoption necessitate a critical 

examination of its theoretical underpinnings, practical feasibility, and scalability. This section contextualizes the 

results within the broader landscape of wireless communications, identifies deployment challenges, and outlines 

pathways for future research. 

 

 

Interpretation of Key Findings 

 

The superior performance of deep reinforcement learning (DRL) over model-based methods in non-stationary 

channels stems from its ability to adaptively learn policy gradients in real time, bypassing the rigidity of predefined 

channel models. Unlike genetic algorithms (GA) or traditional reconfigurable smart surfaces (RIS), which depend 

upon static optimization standards, DRL agents dynamically adjust beamforming weights based totally on straight 

away comments, successfully compensating for Doppler shifts and blockage-precipitated fading. This aligns with 

recent studies as shown by Ge et al. (2023), who set up that DRL’s trial-and- error learning paradigm is inherently 

proper for environments with rapidly diverse spatial correlations. However, this pliability introduces exchange-

offs among computational complexity and actual-time applicability. While the DRL-CNN framework achieves 

sub-five ms latency for 64×64 IMS arrays, its reliance on parallelized GPU acceleration increases worries 

approximately strength performance in resource-constrained deployments. Future work must stability version 

sophistication with light-weight architectures, probably leveraging strategies like neural community pruning or 

quantized inference to reduce overhead. 
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Practical Implications for 6G Deployment 

 

The transition from simulation to real-world deployment faces multifaceted demanding conditions. Fabrication 

tolerances for sub-wavelength metasurface unit cells, in particular at THz frequencies, require nanometer-scale 

precision to avoid segment mistakes that degrade beamforming accuracy. Recent advancements in semiconductor 

lithography (Zhong et al., 2021) provide promising answers, but mass manufacturing remains cost-prohibitive. 

Power requirements also pose a bottleneck: the energetic tuning of PIN diodes and varactors in IMS arrays 

consumes ~25 mW per element, translating to 10.2 W for a 64×64 array-a figure incompatible with energy-green 

6G infrastructure. Hybrid architectures, in which passive metasurfaces are selectively activated, should mitigate 

this issue. 

 

Compatibility with current 5G New Radio (NR) frameworks in addition complicates deployment. While the 

proposed DRL-CNN framework can interface with 5G’s beam control protocols (e.G., SSB and CSI-RS), its 

reliance on actual-time channel state information (CSI) at THz frequencies necessitates adjustments to the NR 

physical layer. For example, the shortened coherence time at 140 GHz requires quicker CSI reporting intervals, 

challenging modern requirements. Collaborative efforts among academia and enterprise can be vital to harmonize 

these improvements with legacy structures. 

 

 

Limitations and Future Directions 

 

A number one drawback lies in data acquisition: the present-day dataset, while complete, lacks granularity in 

intense mobility eventualities (e.g., excessive-pace trains at 500 km/h). Hybrid virtual-analog beamforming 

structures could alleviate this with the aid of reducing the dimensionality of CSI comments, thereby minimizing 

schooling statistics requirements. Additionally, federated studying emerges as a promising avenue for dispensed 

IMS networks, allowing collaborative model schooling throughout more than one base station without centralized 

statistics aggregation. This technique no longer only enhances scalability, however additionally addresses 

privateness issues inherent in centralized ML frameworks. 

 

Further studies have to discover the combination of quantum-stimulated optimization algorithms to tackle non-

convex beamforming troubles, in addition to using metamaterial-based absorbers to suppress sidelobe interference 

in dense urban environments. These innovations, coupled with advancements in sustainable energy harvesting for 

IMS arrays, may be pivotal in realizing the vision of ubiquitous, wise 6G networks. 

 
Table 8. Power consumption analysis of key components 

Component Power (mW) 

IMS Unit Cell 25 

DRL Inference (A100) 18 
                                                            Note: Measurements based on 64×64 IMS array at 140 GHz. 

 

 

Conclusion 
 

The integration of machine learning (ML) with intelligent metasurface (IMS)-enabled antenna arrays affords a 

transformative paradigm for 6G networks, addressing the critical assignment of adaptive beamforming in dynamic 

and excessive-frequency environments. By leveraging deep reinforcement learning (DRL) and convolutional 

neural networks (CNNs), the proposed framework achieves robust beam alignment, reduces latency to sub-5 ms 

degrees, and complements spectral performance with the aid of up to 14.2 bps/Hz in terahertz (THz) bands. These 

advancements bridge the gap among theoretical metasurface improvements—along with sub-wavelength phase-

shifting unit cells-and sensible community optimization, demonstrating how adaptive learning can mitigate 

mobility-triggered channel variations and hardware obstacles. 

 
The impact of this work extends past algorithmic overall performance, offering a blueprint for scalable and energy-

efficient 6G infrastructure. By dynamically aligning beams in real time, the framework supports rising 

applications like holographic communications and extremely-reliable low-latency commercial automation. 

However, the transition from simulation to deployment necessitates urgent standardization of IMS manipulate 

interfaces and fabrication protocols to make certain interoperability across providers. Collaborative efforts 

between academia and industry have to prioritize hardware prototyping, particularly for large-scale metasurfaces, 

to validate those principles in actual international scenarios. Future research has to additionally discover hybrid 
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analog-digital architectures and federate learning to cope with information acquisition bottlenecks, making sure 

the imaginative and prescient of intelligent, self-optimizing 6G networks becomes a tangible reality. 

 

 

Recommendations 

 

Although the present approach is successful, development efforts in the future will focus on improving its abilities 

and looking at what it does poorly. 
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