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Abstract: The accelerated development of 6G networks necessitates innovative solutions to overcome the

limitations of conventional beamforming techniques, particularly in highly mobile and densely obstructed
environments. This paper presents a machine learning (ML)-based framework that synergizes intelligent meta
surfaces (IMS) with reconfigurable antenna arrays to dynamically optimize beamforming in real time. The core
challenge involves adapting to rapidly fluctuating terahertz (THz) channels while ensuring high performance and
ultra-low latency. To address this, we propose a hybrid architecture leveraging deep reinforcement learning
(DRL), for adaptive beamforming policy optimization and convolutional neural networks (CNNs) for real-time
spatial feature extraction. The DRL agent maximizes spectral efficiency by learning optimal beamforming
weights, while the CNN maps angle-of-arrival (AoA) and angle-of-departure (AoD) profiles to IMS
configurations. Simulations conducted on a dataset of 1,000 channel realizations demonstrate a 93.6% beam
alignment accuracy and a 41% reduction in latency compared to genetic algorithms. The framework achieves an
impressive spectral efficiency of 14.2 bps/Hz at 140 GHz, with inference times under 5Sms on a high-end GPU
(e.g., NVIDIA A100) for 64x64 IMS arrays. These results highlight the potential of ML-driven meta surfaces to
enable scalable, adaptive, and energy-efficient 6G systems. The study concludes by advocating standardized IMS
interfaces and large-scale prototyping to accelerate commercial adoption. By bridging metamaterial advancements
with practical network optimization, this work lays the foundation for next-generation wireless systems capable
of supporting immersive and mission-critical applications.

Keywords: Intelligent meta durfaces (IMS), Terahertz beamforming, Deep reinforcement learning (DRL), Low-
latency communications

Introduction

Evolution to Sixth Generation (6G) wireless networks introduces a technology transformation in
telecommunications defined by stringent performance metrics beyond the capabilities of existing infrastructures.
As described in the International Telecommunication Union’s (ITU) white paper of 2023, 6G should deliver ultra-
low latency below 1ms and have a probability of ultra-high reliability above 99.99% as well as seamless support
for over 10° devices per km? These stringent performance requirements are requirements for emerging
applications among them smart systems, tactile internet including smart systems, the tactile internet, and
immersive extended reality, and immersive extended reality which are bound to have extremely stringent
requirements in terms of instantaneous response and steadfast connectivity. In a dynamic 6G environment,
however, the conventional beamforming systems which depend on static phased arrays and fixed phase settings
fail to adapt effectively. The inherent complexity of these systems, as pointed out by Di Renzo et al. (2020), results
in inefficient spectrum utilization and more computation power, mostly in the millimeter wave (mmWave) and
terahertz (THz) frequencies because the state of the channel changes very abruptly due to mobility of the client
and environmental reflections.
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IMS represent a disruptive solution to those worrying situations as it offers precise control over the
electromagnetic wavefronts through subwavelength-scale unit cells with tunable properties that can be tuned. This
IMS differs from the conventional RIS by way of imparting the amplitude and phase in popular realistic
realizations, which typically translate into the spatial granularity of beamforming. Prior art, such as that of Ahamed
et al. (2024), has recently demonstrated real-time beam steering with THz frequencies using meta surfaces,
although integration with scalable antenna arrays is presumed to continue being impeded by the resource of
combinatorial complexity. A dynamically wide variety of channels poses a non-trivial task to optimize plenty of
tunable factors because the solution space grows exponentially with the array size, which further compounds the
problem in dense urban scenarios with non-stationary multipath propagation. This highlights the limitations of
conventional optical algorithms in dynamic beamforming scenarios, as noted by Shi et al. on metasurface-enabled
massive MIMO systems.

To fill those voids, there has been a considerable focus on the ability of machine learning (ML) to convert high-
dimensional optimization problems into feasible solutions. Deep reinforcement learning (DRL) does indicate the
potential ability to change reflect array beamforming schemes dynamically in RIS-assisted systems, as proven by
the results in Zhong et al. (2021). Present frameworks, however, do not embrace both hardware design and
algorithmic optimization as a symbiotic relationship, thus neglecting the positive effects of meta-surface
reconfigurability on learning performance. This limitation hinders scalability, according to Khan et al. 2022
survey on MLS-driven antenna systems calling for design methodologies to realize the IMS full Ericsson.
Motivated by these insights, this research introduces a holistic framework that integrates IMS-enabled
reconfigurable antenna arrays with ML-driven beamforming optimization. The primary objectives are threefold:
(1) to develop a physics-compliant model of IMS-based arrays incorporating hybrid beamforming architectures
and tunable unit cells (e.g., varactor diodes, micro-electromechanical systems), (2) to devise a lightweight ML
framework leveraging DRL for dynamic decision-making and convolutional neural networks (CNNs) for spatial
feature extraction from channel state information, and (3) to validate the framework’s efficacy through large-scale
simulations emulating diverse 6G scenarios, including high-speed vehicular mobility and ultra-dense urban
deployments.

The contributions of this work are multifaceted. First, it pioneers a co-design paradigm that bridges meta surface
hardware innovation with ML algorithms, enabling joint optimization of electromagnetic response and network
performance a departure from siloed approaches in prior studies such as Ma and Hao (2024). Second, the proposed
adaptive beamforming algorithm dynamically adjusts beam patterns and metasurface configurations in real time,
achieving a 35% improvement in spectral efficiency over conventional RIS-aided systems, as demonstrated in
preliminary trials. Third, to mitigate reproducibility-demanding conditions pervasive in wi-fi research, the study
releases an open-source toolkit integrating ray-tracing (e.g., Altair WinProp), metasurface physics, and ML
training pipelines, fostering transparency and community-pushed advancement. By harmonizing hardware
programmability with wise optimization, this work advances the conclusion of energy-efficient, scalable 6G
networks poised to assist subsequent-era applications.

In summary, the core research problem addressed in this work is the inability of conventional beamforming
systems to maintain high spectral efficiency and ultra-low latency in dynamic 6G THz channels, exacerbated by
rapid mobility, blockages, and the combinatorial complexity of large-scale metasurface optimization.

Literature Review

The use of metasurfaces in the wireless communication systems has been brought into the limelight as a keystone
for 6G systems with reconfigurable smart surfaces (RIS) emerging as a leading technology for intelligent
reflection and channel enhancement. Early work by Di Renzo et al. (2020) installed RIS for passive
electromagnetic environment manipulation since they can only work with passive operations, i.e., the phase is
statically set and then cannot be changed dynamically; in cellular scenarios, the solution becomes very hard.
Recent developments along with dynamic metasurface antennas introduced by Ahamed et al. (2024) provided
real-time beam steering at terahertz frequencies via tunable unit cells; however, these designs faced scalability
issues due to the exponential nature of the enormous number of optimizations required for large-scale arrays.
Supporting research by Yasin et al. (2023) introduced hybrid RIS architectures combining passive and active
elements, increasing gain while introducing strength consumption trade-offs. Meanwhile, Papazafeiropoulos et
al. (2025) investigated metasurface-assisted massive MIMO systems indicating great spectral efficiency
improvements in LoS scenarios but underlining the pain of being shadowed when deployed in urban channels.
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Table 1. Metasurface-ML

Focus Area Key Contribution Technology/ Limitation/ Challenge Reference
Method
Meta Introduction of RIS for Reconfigurable Static phase shifts limit Di Renzo et
surface passive electromagnetic  Intelligent adaptability in mobile al. (2020)
Evolution  environment manipulation Surfaces (RIS) scenarios
Dynamic beam steering at Dynamic Scalability issues due to Ahamed et
THz  frequencies using Metasurface optimization complexity al. (2024)
tunable unit cells Antennas for large arrays
Hybrid RIS architectures Hybrid RIS Power consumption trade- Yasin et al.
with passive/active elements offs (2023)
for improved gain
Metasurface-aided massive Massive MIMO  Sensitivity to blockages in  Papazafeiro
MIMO systems for spectral + Metasurfaces urban environments poulos et al.
efficiency gains (2025)
Beamformi SVD-based precoding for Singular Value Performance degradation Salh et al.
ng static channels Decomposition under Doppler shifts in (2021)
Technique (SVD) mobile channels
s Real-time RIS optimization Deep Assumed ideal hardware; Zhong et al.
via deep reinforcement Reinforcement overlooked phase shifter (2021)
learning Learning (DRL)  resolution limits
Privacy-preserving Federated Centralized training raises Fredj et al.
distributed beamforming Learning (FL) scalability concerns (2022)
using federated learning
Critique  of ML-driven Hardware-aware Limited phase shifter Raviv et al.
beamforming under ML resolution degrades ML (2024)
hardware constraints performance
ML in 6G CNN-based mmWave Convolutional Requires large training Chafaa et al.
Networks  channel state estimation Neural Networks —datasets (2022)
(CNNs)
GAN-synthesized  channel Generative High computational Van Huynh
matrices to address data Adversarial overhead limits real-time et al. (2024)
scarcity Networks use
(GANs)
DRL-optimized network Deep Centralized training Nguyen et
slicing in heterogeneous Reinforcement scalability issues al. (2021)
environments Learning (DRL)
GNN-based user clustering Graph  Neural Limited validationinultra- Li et al
for massive MIMO Networks dense deployments (2023)
interference reduction (GNNs)
Co-Design  ML-driven metasurface Machine Ignored fabrication Ma & Hao
Challenges optimization under ideal Learning (ML) tolerances and (2024)
hardware assumptions reconfiguration latency
Digital twin-assisted RIS Digital Twins Excluded mutual coupling Cui et al.
framework effects in metasurface unit  (2023)
cells
Physics-informed neural Physics- High complexity Liu et al.
networks for EM-compliant Informed Neural unsuitable for edge (2024)
metasurfaces Networks deployment
(PINNSs)
Transfer learning for Transfer 25% performance drop Peng et al.
simulated-to-real Learning due to domain shifts (2024)
metasurface adaptation
Survey & Highlighted disconnect Survey Analysis  Calls for lightweight, SMIRI et al.
Critique between algorithmic hardware-software co- (2024)
innovation and hardware designed frameworks
implementation
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Traditional beamforming strategies, rooted in codebook-based or optimization-driven processes, have struggled
to deal with these dynamic challenges. For example, classical techniques like SVD-based precoding, as analyzed
via the manner of Salh et al. (2021), achieve close to-perfect common overall performance in static channels
however, falter below mobility-added about Doppler shifts. In assessment, machine learning ML-driven
beamforming has received traction for its potential to learn channel dynamics. Zhong et al. (2021) tested that deep
reinforcement getting to know (DRL) may also be used to optimize RIS configurations in real time, lowering
latency by 40% in comparison to iterative algorithms. Similarly, federated learning frameworks, which includes
those proposed via manner of Fredj et al. (2022), enabled dispensed beamforming at some point of multi-cellular
networks while preserving user privacy. However, this research often disregarded hardware constraints, along
with the restricted resolution of metasurface section shifters, which degrade ML version efficacy a gap highlighted
in a 2024 critique by Raviv et al.

The function of ML in 6G extends past beamforming to embody channel prediction, resource allocation, and huge
MIMO optimization. For instance, Chafaa et al. (2022) pioneered convolutional neural networks (CNNs) for
millimetre-wave (mmWave) channel state estimation, reaching sub-6 GHz accuracy but requiring large training
datasets. To mitigate statistics scarcity, generative adversarial networks (GANs) have been hired by Van Huynh
et al. (2024) to synthesise practical channel matrices, though their computational overhead restrains real-time
applicability. In aid allocation, DRL frameworks via Nguyen et al. (2021) optimized community cutting in
heterogeneous 6G environments, but their reliance on centralized education raised scalability concerns.
Meanwhile, research on huge MIMO, which includes the ones via Li et al. (2023), included graph neural networks
(GNNs) for consumer clustering, reducing interference by 30% in dense deployments. Despite these
improvements, a continual disconnect remains between algorithmic innovation and hardware-conscious
implementation, as noted in a 2024 survey by means of SMIRI et al.

Critical gaps persist inside the co-layout of smart metasurfaces (IMS) and ML frameworks, especially in
scalability and real-time adaptability. While Ma and Hao (2024) explored ML for metasurface optimization, their
work assumed ideal hardware conditions, neglecting fabrication tolerances and latency in reconfiguration.
Similarly, Cui et al. (2023) proposed a virtual twin-assisted RIS framework; however, overlooked the combination
of IMS-specific constraints, which include mutual coupling among unit cells. Recent efforts with the aid of Liu et
al. (2024) addressed these issues partially through physics-informed neural networks (PINNs), embedding
Maxwell’s equations into ML fashions to ensure electromagnetic compliance. However, their computational
complexity rendered them impractical for side deployment. Furthermore, training data remain a bottleneck, as
highlighted by way of Peng et al. (2024), who discovered that even domain adaptation from simulated to actual-
international metasurfaces incurred a 25% overall performance droppedue to domain shifts. These limitations
underscore the need for lightweight, hardware-software co-designed frameworks that harmonise the
programmability of IMS with the agility of ML and an area ripe for exploration in 6G research.

Methodology

This phase delineates a rigorous methodology to optimize intelligent metasurface (IMS)-enabled reconfigurable
antenna arrays for 6G networks, integrating electromagnetic design, system mastering (ML), and gadget-stage
simulations. The approach is demonstrated using the IMS 6G_ ML Dataset.Csv, which captures diverse channel
conditions, beamforming parameters, and performance metrics.

System Model

The system combines a reconfigurable IMS-antenna structure with a hybrid mmWave-THz channel model to
emulate real-world propagation dynamics.

Intelligent Meta Surface-Antenna Architecture

The IMS unit mobile employs varactors and PIN diodesto achieve tunable phase shifts, enabling dynamic beam
steering. Each unit cell is modelled as a sub-wavelength resonator with the phase response ¢, (V) is governed

by the voltage-dependent impedance 7 (V), where V is the biasing voltage matrix. The reflection coefficient
I, is derived from impedance matching theory:
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Zen (V) — Zg
Ton = T (1)
Zon (V) + Z

Where 7, = 377 Q is the free-space impedance. Recent paintings by way of Zhong et al. (2021) demonstrate that
this architecture achieves a phase decision of 2° at 140 GHz, making it appropriate for 6G’s high-frequency bands.
Hybrid mmWave-THz Channel Model

The channel matrix H incorporates path loss, blockages, and mobility:

P
H= pzlap a(er, ¢§)a? (65, ¢fa)e_j2nfctpv )

In which P paths are characterized via complex gains a, angles of arrival/departure (e;, dhs GE, q);), delays Ty
and carrier frequency f_. Blockages are modeled using a probabilistic attenuation element based on geometric
scattering models (Gustavsson et al., 2021). Blockage probability is calculated using the geometric model from
Gustavsson et al. (2021):

—— 3)

where g is the density of obstacles and { is the link distance.

Machine Learning Framework

The ML framework leverages the dataset to optimize beamforming in real time through spatial feature extractio
and adaptive learning.

Data Generation and Preprocessing

The dataset, generated through MATLAB based ray-tracing simulations, includes 1,000 samples spanning urban
and indoor scenarios. Key features are summarized in Table 2.

Table 2. Summary of dataset features

Feature Mean + Std Range

Ao0A (deg) —12.3+48.2 [-89.9,89.1]
AoD (deg) 18.7+ 524 [-89.0,89.9]
Path Delay (ns) 589 + 54.1 [0.3,404.7]
Spectral Efficiency (bps/Hz) 7.8+ 2.1 [3.0,12.4]

The DRL agent uses a Proximal Policy Optimization (PPO) algorithm with discount factor y = 0.99. The CNN
architecture comprises 5 convolutional layers with ReLU activation, optimized via Adam ( = 10-%). Data
preprocessing includes min-max normalization and feature extraction. Dominant AoA/AoD paliis are identified
using MUSIC algorithms, while channel covariance matrices R = E[HH"] are decomposed to isolate spatial
correlations (Khan et al., 2022).

Algorithm Design

Two ML architectures are jointly developed:

Deep Reinforcement Learning (DRL): An actor-critic network optimizes the beamforming matrix W by
maximizing the reward R = he 1log, (1 + WD =AW where ) penalizes power consumption.

Convolutional Neural Network (CNN): A 28RN processes AoA-AoD heatmaps to predict optimal IMS
configurations, using adversarial training to enhance robustness.
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Optimization Formulation

The problem is cast as a constrained sum-rate maximization:

il L, hfwe
(0]
L g2 o2 +Zj¢k |thW 12

subject to | W IIE< Pray,
SINRk 2 y{h’ Vk.

“

Phase quantization constraints are addressed via penalty methods (Ge et al., 2023).

Simulation Environment

Simulations are conducted in MATLAB/Simulink for channel modeling and PyTorch for ML training.
Performance metrics are evaluated across scenarios (Table 3).

Table 3. Performance metrics across scenarios

Scenario Spectral efficiency (bps/Hz)  Beam error (°)  Latency (ms)
Urban (LoS) 102+ 15 21408 1.1+03
Indoor (NLoS) 6.8+ 1.2 53+1.6 24107

Spectral Efficiency: Calculated using Shannon’s capacity theorem.
Beam Alignment Error: € =l 6,,¢q — Oyrye II-

Latency: End-to-end delay, including inference and IMS reconfiguration.

Results

This section presents a comprehensive analysis of the proposed intelligent metasurface (IMS)-enabled
beamforming framework, validated using the IMS 6G ML Dataset.csv. The results highlight superior
performance in dynamic 6G environments, benchmarked against state-of-the-art methods, and provide critical
insights into scalability and computational efficiency.

Performance Evaluation

Beamforming Accuracy

The proposed DRL-CNN framework achieves a 93.6% beam alignment accuracy in urban line-of-sight (LoS)
scenarios, outperforming conventional reconfigurable intelligent surfaces (RIS) by 28.4% and genetic algorithms
(GA) by 19.7% (Table 4). This improvement stems from the ML architecture’s ability to adaptively map spatial
channel features to optimal IMS configurations, even under mobility-induced Doppler shifts. For instance, in
dynamic indoor non-line-of-sight (NLoS) environments, the root mean square error (RMSE) in beam alignment
is reduced t02.1°, compared to 5.7° for GA and 8.3° for RIS-based methods.

Table.4. Beamforming accuracy comparison

Method Beam Alignment Accuracy (%)  RMSE (°)
Proposed DRL-CNN  93.6 2.1
Genetic Algorithm 73.9 5.7
Conventional RIS 65.2 8.3

Convergence Speed
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The DRL-based beamforming algorithm converges rapidly, stabilizing within 120 training iterations—
significantly faster than Q-learning, which requires over 300 iterations, whereas Q-learning requires over 300
iterations (Figure 1). This acceleration is attributed to the actor-critic architecture, which enabling faster
convergence under time-varying, high-mobility conditions, enabling faster adaptation to time-varying channels.
In high-mobility scenarios, vehicular scenarios (e.g., users moving at 60 km/h), DRL reduces beam realignment
latency by 41% compared to Q-learning.

Convergence Speed: DRL vs. Q-Learning
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Figure 1. Convergence speed of DRL vs. Q-Learning
Scalability

The framework’s computational efficiency is evaluated for varying IMS array sizes. A 64x64 IMS array incurs a
2.8x increase in computation time compared to a 16x16 array but maintains real-time operability with inference
latency under 5 ms due to parallelized CNN inference (Table 5). This scalability ensures applicability to massive
MIMO deployments in 6G.

Table 5. Scalability analysis
Array size  Computation time (ms)  Spectral efficiency (bps/Hz)

16x16 1.2 9.8
32x32 24 11.3
64x64 34 13.1

Visualization

3D Beam Patterns Under Mobility

Figure 2 illustrates the 3D beam patterns generated by the IMS array for a mobile user moving at 30 km/h. The
proposed framework dynamically adjusts phase shifts to maintain a focused main lobe, minimizing sidelobe

interference. At 140 GHz, the beamwidth remains stable at 4.2°, ensuring consistent signal strength despite user
mobility.
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3D Beam Pattern for Mobile Users
Beamwidth = 4.2°
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Figure 2. 3D beam patterns for mobile users

Spectral Efficiency Heatmaps
Figure 3 visualizes spectral efficiency across the 100—150 GHz band. The DRL-CNN framework achieves peak

efficiency of 14.2 bps/Hz at 140 GHz, outperforming RIS by 32% in obstructed environments. The heatmap
highlights frequency-selective gains, particularly in LoS-dominated urban scenarios.
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Spectral Efficiency Heatmap Across Frequencies
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Figure 3. Spectral efficiency heatmap across frequencies
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Latency and Energy Consumption
Table 6 quantifies the end-to-end latency and energy consumption for beamforming optimization. The DRL-CNN
framework reduces energy consumption by 37% compared to GA, owing to efficient resource allocation and

sparse parameter updates.

Table 6. Latency and energy consumption

Metric Proposed DRL-CNN  Genetic Algorithm  Conventional RIS
Latency (ms) 3.4 8.9 12.6
Energy Consumption (mJ)  45.2 71.8 92.4
Table 7. Hyperparameter configurations for DRL and CNN models

Hyperparameter DRL Value  CNN Value

Learning Rate 0.001 0.0001

Batch Size 64 32

Discount Factor (y)  0.99 N/A

v: Denotes the discount factor for future rewards in DRL.

Key Insights

1. Adaptive Beamforming: The DRL-CNN framework achieves near-optimal beam alignment in dynamic
environments, critical for 6G’s ultra-reliable low-latency communication (URLLC) applications.

2. Scalability: Parallelized ML inference enables real-time operation for large-scale IMS arrays (64x64),
ensuring readiness for future 6G deployments.

3. Energy Efficiency: Sparse updates and intelligent resource allocation reduce energy consumption by 37%
compared to GA, and up to 52% compared to conventional RIS, addressing sustainability challenges in
6G networks.

These results validate the proposed methodology’s superiority over existing approaches, highlighting its potential
as a foundational approach for intelligent metasurface-enabled 6G systems for intelligent metasurface-enabled 6G
systems.

Discussion

The proposed intelligent metasurface (IMS)-enabled beamforming framework demonstrates significant
advancements in dynamic 6G networks, yet its implementation and broader adoption necessitate a critical
examination of its theoretical underpinnings, practical feasibility, and scalability. This section contextualizes the
results within the broader landscape of wireless communications, identifies deployment challenges, and outlines
pathways for future research.

Interpretation of Key Findings

The superior performance of deep reinforcement learning (DRL) over model-based methods in non-stationary
channels stems from its ability to adaptively learn policy gradients in real time, bypassing the rigidity of predefined
channel models. Unlike genetic algorithms (GA) or traditional reconfigurable smart surfaces (RIS), which depend
upon static optimization standards, DRL agents dynamically adjust beamforming weights based totally on straight
away comments, successfully compensating for Doppler shifts and blockage-precipitated fading. This aligns with
recent studies as shown by Ge et al. (2023), who set up that DRL’s trial-and- error learning paradigm is inherently
proper for environments with rapidly diverse spatial correlations. However, this pliability introduces exchange-
offs among computational complexity and actual-time applicability. While the DRL-CNN framework achieves
sub-five ms latency for 64x64 IMS arrays, its reliance on parallelized GPU acceleration increases worries
approximately strength performance in resource-constrained deployments. Future work must stability version
sophistication with light-weight architectures, probably leveraging strategies like neural community pruning or
quantized inference to reduce overhead.
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Practical Implications for 6G Deployment

The transition from simulation to real-world deployment faces multifaceted demanding conditions. Fabrication
tolerances for sub-wavelength metasurface unit cells, in particular at THz frequencies, require nanometer-scale
precision to avoid segment mistakes that degrade beamforming accuracy. Recent advancements in semiconductor
lithography (Zhong et al., 2021) provide promising answers, but mass manufacturing remains cost-prohibitive.
Power requirements also pose a bottleneck: the energetic tuning of PIN diodes and varactors in IMS arrays
consumes ~25 mW per element, translating to 10.2 W for a 64x64 array-a figure incompatible with energy-green
6G infrastructure. Hybrid architectures, in which passive metasurfaces are selectively activated, should mitigate
this issue.

Compatibility with current 5G New Radio (NR) frameworks in addition complicates deployment. While the
proposed DRL-CNN framework can interface with 5G’s beam control protocols (e.G., SSB and CSI-RS), its
reliance on actual-time channel state information (CSI) at THz frequencies necessitates adjustments to the NR
physical layer. For example, the shortened coherence time at 140 GHz requires quicker CSI reporting intervals,
challenging modern requirements. Collaborative efforts among academia and enterprise can be vital to harmonize
these improvements with legacy structures.

Limitations and Future Directions

A number one drawback lies in data acquisition: the present-day dataset, while complete, lacks granularity in
intense mobility eventualities (e.g., excessive-pace trains at 500 km/h). Hybrid virtual-analog beamforming
structures could alleviate this with the aid of reducing the dimensionality of CSI comments, thereby minimizing
schooling statistics requirements. Additionally, federated studying emerges as a promising avenue for dispensed
IMS networks, allowing collaborative model schooling throughout more than one base station without centralized
statistics aggregation. This technique no longer only enhances scalability, however additionally addresses
privateness issues inherent in centralized ML frameworks.

Further studies have to discover the combination of quantum-stimulated optimization algorithms to tackle non-
convex beamforming troubles, in addition to using metamaterial-based absorbers to suppress sidelobe interference
in dense urban environments. These innovations, coupled with advancements in sustainable energy harvesting for

IMS arrays, may be pivotal in realizing the vision of ubiquitous, wise 6G networks.

Table 8. Power consumption analysis of key components
Component Power (mW)
IMS Unit Cell 25
DRL Inference (A100) 18
Note: Measurements based on 64 %64 IMS array at 140 GHz.

Conclusion

The integration of machine learning (ML) with intelligent metasurface (IMS)-enabled antenna arrays affords a
transformative paradigm for 6G networks, addressing the critical assignment of adaptive beamforming in dynamic
and excessive-frequency environments. By leveraging deep reinforcement learning (DRL) and convolutional
neural networks (CNNs), the proposed framework achieves robust beam alignment, reduces latency to sub-5 ms
degrees, and complements spectral performance with the aid of up to 14.2 bps/Hz in terahertz (THz) bands. These
advancements bridge the gap among theoretical metasurface improvements—along with sub-wavelength phase-
shifting unit cells-and sensible community optimization, demonstrating how adaptive learning can mitigate
mobility-triggered channel variations and hardware obstacles.

The impact of this work extends past algorithmic overall performance, offering a blueprint for scalable and energy -
efficient 6G infrastructure. By dynamically aligning beams in real time, the framework supports rising
applications like holographic communications and extremely-reliable low-latency commercial automation.
However, the transition from simulation to deployment necessitates urgent standardization of IMS manipulate
interfaces and fabrication protocols to make certain interoperability across providers. Collaborative efforts
between academia and industry have to prioritize hardware prototyping, particularly for large-scale metasurfaces,
to validate those principles in actual international scenarios. Future research has to additionally discover hybrid
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analog-digital architectures and federate learning to cope with information acquisition bottlenecks, making sure
the imaginative and prescient of intelligent, self-optimizing 6G networks becomes a tangible reality.

Recommendations

Although the present approach is successful, development efforts in the future will focus on improving its abilities
and looking at what it does poorly.
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