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Abstract: Modern engineering systems increasingly encounter complex, high-dimensional optimization

problems that challenge traditional solution methods. Swarm intelligence (SI) algorithms, inspired by the
collective behavior of biological systems, offer robust and adaptable alternatives. This review systematically
explores the development and application of key SI techniques-Particle Swarm Optimization (PSO), Artificial
Bee Colony (ABC), and Ant Colony Optimization (ACO)-within engineering domains from 2020 to 2025.
Drawing on recent literature, the paper identifies major application areas in mechanical, structural, power, energy,
civil, and infrastructure engineering. It evaluates algorithmic performance trends, emphasizing the superior
convergence and robustness of hybrid approaches, along with their growing integration with machine learning.
The review also highlights advances in multi-objective optimization and the expanding use of SI in emerging
fields such as IoT and cybersecurity. The findings underscore the increasing significance of SI in next-generation
engineering systems, particularly in autonomous technologies and smart infrastructure, while outlining key
directions for future research and practical deployment.

Keywords: Swarm intelligence, Engineering optimization, Particle swarm optimization, Artificial bee colony,
Ant colony optimization, Hybrid algorithms

Introduction

Subdivide text into unnumbered sections, Modern engineering systems face unprecedented complexity challenges
that traditional optimization approaches struggle to address effectively. The exponential growth in system scale,
multi-objective requirements, and real-time constraints has created substantial demand for robust, adaptable
optimization methodologies (Tartibu, 2025). Swarm intelligence algorithms, inspired by collective behaviors
observed in natural systems, have emerged as compelling solutions to these challenges. Swarm intelligence
applications have seen phenomenal growth in the engineering community within the last five years due to
improvements in hardware and software complexity (Paul et al., 2024). These bio-inspired algorithms show
unrivaled versatility in tackling a number of contemporary engineering problems that are characterized by
complex non-linear, multi-modal optimization landscapes, such as optimizing renewable energy systems and
managing communication networks (Beegum et al., 2023).
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This thorough review discusses the increasing importance of systematic evaluation of swarm intelligence
applications for engineering applications between 2020 and 2025. It covers all the core algorithm families for the
Particle Swarm Optimization, Artificial Bee Colony, and Ant Colony Optimization and their applications in wide
range of engineering ons (Selvarajan, 2024). Using systematic literature review techniques, this paper investigates
all related peer-reviewed publications from three major engineering databases, IEEE Xplore, ScienceDirect and
SpringerLink. Our paper is organized around algorithmic structure that lays out fundamental principles, domain-
specific applications, and critical take on trends. This book focuses on implementation strategies, performance
characteristics, and practical issues of interest to practicing engineers for each application domain.

Swarm Intelligence Fundamentals and Classification

Swarm intelligence algorithms operate on the principle of collective behavior emergence from simple individual
interactions(Tang et al., 2021). These algorithms demonstrate particular effectiveness in engineering optimization
due to their inherent parallelism, robustness to local optima, and adaptability to dynamic problem landscapes.
Particle Swarm Optimization represents the most widely adopted swarm intelligence technique in engineering
applications (Gad, 2022). PSO algorithms simulate social behavior patterns observed in bird flocking and fish
schooling, where individual particles adjust their positions based on personal experience and collective
knowledge. The fundamental PSO update equations govern velocity and position modifications, incorporating
inertia weight, cognitive coefficient, and social coefficient parameters that significantly influence convergence
characteristics. Artificial Bee Colony algorithms model the foraging behavior of honeybee colonies, employing
three distinct bee categories: employed bees, onlooker bees, and scout bees(Wang et al., 2022). The ABC
framework demonstrates particular strength in maintaining exploration-exploitation balance through its
probabilistic selection mechanism and abandonment criterion. Engineering applications benefit from ABC's
ability to escape local optima while maintaining solution quality throughout the optimization process.

Ant Colony Optimization techniques derive inspiration from ant foraging behavior, utilizing pheromone trail
mechanisms to guide solution construction(Yahia et al., 2020a). ACO algorithms excel in combinatorial
optimization problems frequently encountered in engineering design, particularly in path planning, scheduling,
and resource allocation scenarios. The pheromone update rules and heuristic information integration provide
effective mechanisms for incorporating domain-specific knowledge. Algorithm selection criteria for engineering
applications depend on problem characteristics including dimensionality, constraint complexity, and real-time
requirements (Jiao et al., 2023). Multi-modal optimization problems typically favor PSO variants due to their
superior exploration capabilities, while combinatorial problems often benefit from ACO implementations. ABC
algorithms demonstrate consistent performance across diverse problem types, making them suitable for general-
purpose engineering optimization.

Performance evaluation frameworks for swarm intelligence algorithms require careful consideration of multiple
metrics including convergence speed, solution quality, computational efficiency, and robustness(Halim et al.,
2021). Standard benchmark functions provide baseline comparisons, but engineering applications necessitate
domain-specific performance indicators that reflect practical implementation constraints and objectives. To
provide a conceptual structure for understanding the diversity of swarm intelligence (SI) techniques and their
integration into engineering domains, Figure 1 presents a visual taxonomy that categorizes SI algorithms based
on their biological inspiration, core mechanism, and typical engineering applications.
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Figure 1. Taxonomy of swarm intelligence algorithms in engineering
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Engineering Application Domains
Mechanical and Structural Engineering

Swarm intelligence algorithms have been increasingly adopted in mechanical and structural engineering
applications to address complex design optimization challenges (Han & Sun, 2024). Design optimization
problems in mechanical systems often involve multi-objective considerations, including weight minimization,
stress distribution, and manufacturing constraints. Swarm intelligence techniques are particularly effective in
managing these competing objectives while adhering to stringent safety requirements.

Material selection optimization is a critical application area where swarm intelligence provides substantial value
(Xu et al., 2023). Traditional methods—such as weighted decision matrices—often fall short in capturing the
complex interdependencies among material properties and application-specific requirements. In contrast, swarm-
based approaches enable a comprehensive exploration of the material property space, accounting for
manufacturing constraints, cost factors, and performance specifications simultaneously.

Construction site layout optimization has also emerged as a prominent domain for swarm intelligence applications
(Xu et al., 2023). Construction projects require the spatial coordination of equipment, materials, and temporary
facilities, all of which influence project efficiency and safety. Ant Colony Optimization (ACO) algorithms have
shown particular effectiveness in this context, as they efficiently handle discrete spatial arrangements while
incorporating safety distance constraints and workflow optimization goals.

Gear train design optimization exemplifies the application of swarm intelligence in mechanical component design
(Jenis et al., 2023). Traditional gear train design typically relies on iterative methods that risk convergence to
suboptimal solutions. Particle Swarm Optimization (PSO) techniques, however, facilitate a more exhaustive
search of gear ratio combinations while satisfying torque transmission requirements, space limitations, and
manufacturing constraints. Recent approaches have adopted multi-objective formulations that simultaneously
optimize power transmission efficiency and gear train compactness.

Structural topology optimization has also seen notable advancements through swarm intelligence, particularly in
scenarios that require innovative structural configurations (Kwok, 2022). These algorithms enable the exploration
of unconventional layouts that traditional design methods might overlook. Their capability to handle discrete
design variables makes them especially suitable for truss optimization problems, where selecting appropriate
cross-sectional properties is essential.

Power Systems and Energy Engineering

Extensive progress has been made in swarm intelligence applications in power systems and energy engineering,
which investigate the complex behaviour of modern electrical grids and the need for their integration with
renewable energy sources (Cavus, 2025). Photovoltaic system optimization is one of the most important
application areas that can be accomplished by using swarm intelligence algorithms to optimize several objectives
together such as power generation, reliability, and economic aspects, etc.

This means the issue of solar panel placement optimization consists of complicated geometric and environmental
parameters that generally traditional optimization methods fail to manage those topics effectively (Soomar et al.,
2022). Particle Swarm Optimisation (PSO) algorithms exhibit remarkable performance in optimising Large PV
arrays while taking into account shading impacts, installation limitations, and feasibility of maintenance. Newer
designs include dynamic shading analysis based on seasonal changes incorporated with the effect of surrounding
structures.

Power Grid Management applications are a new power grid management application that smartly integrates swarm
intelligence algorithms such as hydropower, solar-panel array optimization, and many other types for optimizing
real-time generation dispatch (Albogamy et al., 2022). The dynamic nature of electrical demand and renewable
power generation creates landscapes of optimization that are actually changeable in real time. So we need adaptive
algorithms to track the optimum solution from continuously changing environments. The particular merit of
Artificial Bee Colony algorithms lies in their ability to keep various solutions while moving resources to cope
rapidly with changes in system conditions (Kuo, 2021).
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The interface between emerging Smart Grid application areas and swarm intelligence is a brand-new frontier for
developers! Smart grid systems need to co-ordinate not only with distributed energy sources, demand response
programs and energy storage systems (Tang et al., 2021). But also fix that the programme presents a unified face
to the world, without energy silos. Assembly line operations on a grand scale: use tendencies of localisation and
consolidation to bring power distribution control points down to where they are needed more directly.

Apply these methods to balance electricity supply and demand across entire networks of consumers at any given
moment, including smoothing out fluctuations in voltage caused by large frequency changes (Sina et al., 2021).
Integration of energy from renewable sources presents new challenges to this field. Wind and solar power systems
have an intrinsic variability that requires forecasts produced by intelligent. The example of combining multiple
algorithms types to tackle renewable energy power system integration shows that hybrid swarm intelligence
methods achieve superior performance (Yousef et al., 2023).

Energy storage system optimization has emerged as a critical application area for swarm intelligence algorithms(
Wang et al., 2024). Battery energy storage systems require complex optimization of charge-discharge cycles,
state-of-charge management, and degradation minimization. Swarm intelligence approaches enable
comprehensive optimization of energy storage operations while considering multiple time scales from real-time
power balancing to long-term capacity planning.

Civil and Infrastructure Engineering

Civil and infrastructure engineering applications have increasingly adopted swarm intelligence algorithms for
addressing large-scale optimization problems characteristic of infrastructure development and
management(Ghaemifard & Ghannadiasl, 2024). Structural design optimization encompasses a broad range of
applications from building design to bridge construction, where swarm intelligence algorithms provide effective
solutions for multi-objective optimization problems involving structural performance, cost minimization, and
construction feasibility.

Bridge design optimization exemplifies the application of swarm intelligence in structural engineering(Martinez-
Muiioz et al., 2022). Modern bridge design requires simultaneous consideration of structural performance,
aesthetic considerations, environmental impact, and construction logistics. Particle Swarm Optimization
algorithms demonstrate effectiveness in bridge design optimization by exploring design variable spaces that
include geometric parameters, material specifications, and construction sequencing decisions.

Construction scheduling and resource allocation problems represent another significant application domain for
swarm intelligence techniques(Ghoroqi et al., 2024). Construction projects involve complex interdependencies
between activities, resource constraints, and time limitations that create challenging optimization environments.
Ant Colony Optimization algorithms show particular strength in construction scheduling applications due to their
ability to handle precedence constraints and resource limitations while optimizing project duration and cost
objectives(Shen & Wu, 2025).

Infrastructure network planning applications leverage swarm intelligence algorithms for optimizing transportation
networks, utility distribution systems, and communication infrastructure(Alkinani et al., 2022). These problems
typically involve large-scale discrete optimization challenges where traditional approaches may become
computationally prohibitive. Swarm intelligence algorithms provide scalable solutions that can handle network
planning problems involving thousands of nodes and connections.

There are SI methods that have been applied to optimize pavement design using several performance indices
including structural capacity, durability, and life cycle costs (Kang et al., 2025). Traditional pavement design
processes often heavily rely on simplified design methods which may not really maximize the long-term
performance of the pavement. But with swarm intelligence algorithms all pavement layers' configuration is taken
into account, encompassing traffic load patterns and climatic conditions in a comprehensive manner and also
incorporating maintenance requirements.

Water distribution system optimization represents a critical application area where swarm intelligence algorithms
address complex hydraulic design problems(Pham et al., 2023). Water distribution networks require careful
balancing of pipe sizing, pump placement, and storage facility design to achieve adequate service levels while
minimizing infrastructure costs. Multi-objective swarm intelligence approaches demonstrate effectiveness in
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water system optimization by simultaneously addressing hydraulic performance, economic objectives, and
reliability requirements.

Control Systems and Automation

Control systems and automation applications have embraced swarm intelligence algorithms for addressing
complex parameter optimization and system coordination challenges(Bhimana & Ravindran, 2024). Process
parameter optimization represents a fundamental application area where swarm intelligence techniques provide
superior performance compared to traditional tuning methods. Industrial processes often involve multiple
interacting control loops with complex dynamics that require sophisticated optimization approaches.

PID controller tuning applications demonstrate the effectiveness of swarm intelligence algorithms in control
system optimization(Joseph et al., 2022). Traditional PID tuning methods may struggle with complex process
dynamics, time delays, and nonlinear characteristics commonly encountered in industrial applications. Particle
Swarm Optimization algorithms provide robust frameworks for PID parameter optimization that consider multiple
performance criteria including settling time, overshoot, and steady-state error simultaneously.

Robotic path planning and coordination applications leverage swarm intelligence algorithms for managing
complex navigation problems in dynamic environments(Nguyen, 2024). Multi-robot coordination requires
sophisticated algorithms capable of handling real-time constraints while optimizing collective objectives such as
task completion time and energy consumption. Swarm intelligence approaches provide natural frameworks for
robot coordination by modeling individual robots as swarm agents that cooperate to achieve system-wide
objectives.

Industrial automation and scheduling applications benefit from swarm intelligence implementations that address
complex resource allocation and timing optimization problems(Del Gallo et al., 2023). Manufacturing systems
involve multiple machines, workers, and materials that must be coordinated to achieve production objectives while
satisfying quality requirements and delivery schedules. Ant Colony Optimization algorithms demonstrate
particular effectiveness in manufacturing scheduling applications due to their ability to handle complex
precedence constraints and resource limitations.

Model predictive control applications have increasingly incorporated swarm intelligence algorithms for solving
online optimization problems(Tang et al., 2021). Model predictive control requires repeated solution of
optimization problems within strict time constraints, creating computational challenges for traditional
optimization approaches. Swarm intelligence algorithms provide efficient solutions for MPC applications by
leveraging population-based search strategies that can be readily parallelized.

Fault detection and diagnosis applications utilize swarm intelligence algorithms for optimizing sensor placement,
feature selection, and diagnostic model parameters (Nezamivand Chegini et al., 2022). Industrial systems require
robust fault detection capabilities that can identify potential problems before they result in system failures. Swarm
intelligence approaches enable comprehensive optimization of fault detection systems while considering multiple
performance criteria including detection accuracy, false alarm rates, and computational requirements.

Wireless Networks and Communications

Wireless networks and communications applications have witnessed significant growth in swarm intelligence
implementations, driven by increasing network complexity and performance requirements(Al-Mousawi, 2021).
Network optimization and resource allocation problems represent primary application areas where swarm
intelligence algorithms demonstrate superior performance compared to traditional approaches. To modern
wireless networks mean a variety of access technologies and equipment, as well as changing ways for data to
flow. Then there's another thing-socioeconomic factors which create complex optimization problems. Indeed, we
cannot expect all future network traffic patterns and their features at any given time period to be consistent with
past ones.

Spectrum management in next-generation networks has become a major focus area for profundity techniques
(Pham et al., 2021). Cognitive radio networks need intelligent spectrum management algorithms that can adapt to
changes in the availability of available spectrum while at the same time ensuring that network capacity is
maximized and user satisfaction remains high. Particle swarm optimization algorithms in the area of spectrum
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allocation are particularly effective, because they allow for optimal dynamic distribution of spectrum assignments
based on interference constraints and quality of service stipulations.

Also, SI algorithms have been adapted to propose solutions for resource allocation and service placement
decisions in edge computing and Internet-of-Things applications (Bey et al., 2024). When it comes to edge
computing systems, we need to allocate precisely the computational resources, network bandwidth, and latency
needs to provide an acceptable quality of service. Swarm intelligence-based approaches are powerful models for
improving edge computing and have significant advantage at embracing the distributed nature of IoT and allowing
multiple edge nodes to coordinate with each other.

Wireless sensor network optimization represents another significant application domain for swarm intelligence
algorithms(Tang & Nie, 2024). Sensor networks require careful optimization of node placement, routing
protocols, and energy management strategies to achieve extended network lifetime while maintaining adequate
sensing coverage. Artificial Bee Colony algorithms demonstrate effectiveness in sensor network applications due
to their ability to balance exploration and exploitation while considering multiple optimization objectives.

Network security applications utilize swarm intelligence algorithms for optimizing intrusion detection systems,
encryption key management, and security policy enforcement(Nasir et al., 2022). Network security requires
continuous adaptation to evolving threat landscapes while maintaining acceptable system performance. Swarm
intelligence approaches enable dynamic optimization of security parameters while considering the trade-offs
between security effectiveness and system performance.

Swarm intelligence implementations have been shown to offer substantial benefits for optimizing complex
resource allocation and engineering tasks in multimedia communications (Darwich & Bayoumi, 2025). In order
to ensure such quality of service (QoS) requirements such as bandwidth, latency, and reliability characteristics,
multimedia applications lead to difficult optimization problems in resource-constrained networks. It is observed
that multi-objective approaches of swarm intelligence are effective in both QoS optimization under changing
network conditions and capable of optimizing simultaneously multiple performance criteria.

Emerging and Interdisciplinary Applications

Novel and cross-disciplinary applications suggest new exciting frontiers for swarm intelligence implementations
and showing the versatility and adaptability of these algorithms to various interdisciplinary engineering fields
(Nguyen, 2024). Swarm intelligence methods have gained significant attention in the field of biomedical
engineering for solving real-life multi-dimensional complex optimization problems such as medical device design
and process, therapeutic treatment planning, and optimization of a diagnostic system, and so on.

Swarm intelligence algorithms are used for optimization related to medical image processing applications such
as; image segmentation, feature extraction, and pattern recognition tasks (Xu et al., 2023). Medical imaging
systems must process complex algorithms that are noise resistant, artifact resistant and anatomical variant
resistant to yield diagnostic information. SWARM-INTELLIGENCE-S-based methods effectively illustrate the
specific parameter space in medical imaging applications while being computationally efficient.

Drug discovery and drug engineering practices use swarm intelligence algorithms to optimize molecular design,
the receptor docking method, and then any formulations of drug delivery systems (Vora et al., 2023). With
complex multi-objective optimization problems, pharmaceutical production is where traditional methods are
unable to cope due to such large parameter space and competing goals. Particle Swarm Optimization algorithm in
its developments has shown the pharmaceutical application: efficient exploration for molecular configurations
space, while considering multiple drug efficacy and safety criteria.

Environmental system optimization has become an important application area of swarm intelligence techniques
(Tang et al., 2021). Environmental engineering problems could often include a variety of phenomena from
physical, chemical and biological processes together to produce difficult optimization landscapes. It is also used
for air quality management, water treatment optimization and waste management systems, in what are soon to
become embarrassing next steps as the funds change hands of those who would make a move with them.

By integrating elements of the environment in which an algorithm operates, including multiple environmental
objectives instead of only one while still respecting both regulatory constraints and economic considerations,
swarm intelligence breeds successes. Cybersecurity and network security applications represent rapidly growing
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domains for swarm intelligence implementations (Irfan, 2024). Cybersecurity systems require continuous
adaptation to evolving threat patterns while maintaining system performance and user accessibility. Swarm
intelligence algorithms provide effective frameworks for cybersecurity optimization by enabling dynamic
adaptation of security parameters while considering the balance between security effectiveness and system
usability.

Supply chain optimization applications leverage swarm intelligence algorithms for addressing complex logistics
and inventory management problems(Nweje & Taiwo, 2025). Modern supply chains involve multiple suppliers,
manufacturers, distributors, and customers that must be coordinated to achieve cost minimization and service level
objectives. Ant Colony Optimization algorithms demonstrate particular effectiveness in supply chain applications
due to their ability to handle complex routing and scheduling problems while considering multiple stakeholders
and constraints.

Hybrid and Advanced Swarm Techniques

Recent developments in swarm intelligence have increasingly focused on hybrid approaches that combine
multiple optimization techniques to leverage complementary strengths and overcome individual algorithm
limitations(Priyadarshi & Kumar, 2025). The period from 2020 to 2025 has witnessed substantial advancement
in hybridization strategies that integrate swarm intelligence algorithms with machine learning techniques,
traditional optimization methods, and domain-specific heuristics.

With careful implementation of swarm intelligence, advanced approaches have been effective in solving complex
Pareto optimization problems through the years (Harkare et al., 2024). Recent developments of multi-objective
swarm algorithms involve complex selection, diversity preservation and convergence acceleration techniques,
which allow to effectively explore the Pareto frontiers even in high-dimensional objective spaces. For engineering
applications requiring consideration of multiple competing objectives simultaneously, these developments are
especially timely.

One of the most notable, is the growing trend of an integration of machine learning techniques with swarm
intelligence implementations on a large scale (Soori et al., 2023). Integration of modes such as swarm
optimization, neural networks, support vector machines, and significant improvement in hybrid approaches on
deep learning architectures in complex optimization processes. The integration of machine learning components
gives solutions adaptive parameter tuning, smart initialization strategies, and predictive guidance that improve the
convergence characteristics and solution quality from swarm algorithms.

Adaptive mechanisms for parameter control have become a key element in state-of-the-art swarm intelligence
algorithms (Sissodia et al., 2025a). Classic swarm algorithms usually use time-constant parameters, which can
be non-optimal during the whole optimization task. More recent strategies include dynamic parameter adjustment
that adapt the behaviour of the algorithm depending on the actual state of the search process, diversity in the
population and problem-specific information. These adaptive mechanisms greatly enhance both algorithm
robustness and performance on a wide range of problem types.

Driven by growing computational needs and the availability of parallel processing platforms, parallel and
distributed implementations of swarm intelligence have been highlighted (de Melo Menezes et al., 2022; Yahia et
al., 2020b). The high-performance parallel architecture allows some swarm algorithms to address large-scale
optimization problems that would be computationally infeasible using sequential implementations. Swarm
approaches that are distributed also offer a way to increase fault tolerance and scalability for real-time engineering
applications.

Swarm intelligence algorithms with an enhanced ability to retain memory have more sophisticated methods for
storing and retrieving information that allow them to perform better than traditional methods in dynamic
optimization environments (Mohammadpour et al., 2024). These methods keep a record of historical information
regarding regions in the solution space that have demonstrated potential, which allows for a quick adjustment
approach as soon as changes in the characteristics of the problem occur. The algorithms enhanced with memory
illustrate their specific advantages in engineering applications, as in these applications’ optimization landscapes
can change when the operating conditions or requirements change.

Critical Analysis and Performance Evaluation
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Empirical performance comparison indicates that the effectiveness of swarm intelligence algorithms can vary
greatly depending on the problem characteristics and implementation strategies (Tang et al., 2021), both across
different engineering domains. In the continuous optimization problems of moderate dimensionality, Particle
Swarm Optimization algorithms continuously outperform other techniques, while Ant Colony Optimization
techniques outperform other combinatorial optimization techniques. The performance of Artificial Bee Colony
algorithms is robust over several diverse problem types, so it is appropriate for general engineering applications.
Statical analysis is one of the most common techniques used for implementing these formal methods in real-world
engineering applications, but it has its own set of challenges, especially due to computational limitations, real-
time requirements, and integration with existing systems (Kopetz & Steiner, 2022). For complex engineering
models, it may be computationally expensive to perform multiple function evaluations needed for swarm
intelligence algorithms. Surrogate modelling, parallelisation, and clever initialization strategies alleviate these
issues at the cost of not requiring the expensive evaluations of, e.g.

The success of implementations of swarm intelligences is dependent on selecting the appropriate algorithm, tuning
the parameters correctly, and properly formulating the problem (Qawqzeh et al., 2021). However, application
domains might require specific adaptations of the proposed optimizations along with domain knowledge and
limits to be incorporated directly into the optimization framework and hence engineering applications are often
more a hybrid of design and engineering knowledge. In practice, many successful implementations use domain
knowledge in conjunction with swarm intelligence algorithms to create hybrid designs that transmute algorithmic
efficiency and engineering insight.

Most of the failure modes in applications of swarm intelligence are attributed to either premature convergence,
non-adaptive parameter setting or ill-posed problem definitions (Kong et al., 2024). Diversity loss is tackled by
diversity preservation mechanisms, adaptive parameter control and multi-population approach deals with the
premature convergence problem. In contrast, parameter sensitivity analysis and robust optimization techniques
help to determine suitable ranges of parameters that ensure stable and well-performing behavior in a variety of
problem instances.

Evaluating robustness, which is an essential task, should occur across the widest variety of problem variants,
noise conditions, and constraints (Nguyen, 2024). Introduction Dynamic optimization problems are pervasive in
engineering applications, where parameters can be uncertain, and measurement noise and changing operating
conditions impose dynamic requirements on optimization environments. Practical implementations of swarm
intelligence are relatively complete, including uncertainty management, constraint management, and adaptation
strategies to keep performance unchanged under different cases.

In engineering application Performance benchmarking, the various evaluation criteria to be considered are
solution quality, convergence rate, computational cost, and ease of implementation (Pargaonkar, 2023). While
standard benchmark functions offer baseline comparisons, performance metrics tailored to engineering are often
a more accurate reflection of practical implementation needs. Evaluation frameworks should be broad, assessing
algorithmic performance alongside those features of practical implementation that are relevant to a particular
branch of engineering.

Performance Evaluation Tables for Swarm Intelligence Algorithms

The comparative analysis of fundamental performance metrics reveals distinct algorithmic trade-offs across the
swarm intelligence paradigms. As shown in table (1), PSO demonstrates superior convergence characteristics,
achieving 95% optimality within 20-50 iterations while maintaining computational efficiency at O(NxD)
complexity. However, its scalability limitations become apparent beyond 100 dimensions, and parameter
sensitivity remains a critical concern with performance variance exceeding 25%.

ABC exhibits enhanced robustness with standard deviation values between 0.05-0.15, making it particularly
suitable for noisy optimization landscapes, though at the cost of increased computational overhead (O(2NxD)).
ACO achieves the highest solution quality for discrete problems, maintaining 90-95% optimality with exceptional
scalability beyond 500 dimensions, but suffers from slow convergence requiring 100-200 iterations. The hybrid
PSO-ABC approach emerges as the most promising variant, combining rapid convergence (15-40 iterations) with
superior solution quality (96-99% optimal) and enhanced robustness (¢ = 0.03-0.12), albeit with increased
computational complexity.
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Table 1. Key performance metrics comparison

Performance . Measurement
Metric PSO ABC ACO Hybrid PSO-ABC Method
Convergence Fast Moderate Slow Fast (15-40 Iterations to 95%
Speed (20-50 (50-100 (100-200 iterations) iterations) optimal
P iterations) iterations) p
High High . o . o/ o
Solution Quality (95-98% (90-95% Very High (90-95% Very High (96-99% % Qf global
. . optimal) optimal) optimum
optimal) optimal)
Computational ~ Low Moderate . ) . . .
Cost (O(NXD)) (O(2N*D)) High (O(N?xD))  High (O(3NxD))  Time complexity
Moderate . . .
_ i} High High Very High -
Robustness 8?25)0.15 (6=0.05-0.15) (5 =0.08-0.18) (c=0.03-0.12) Standard deviation
Scalabilit Poor Good Excellent Good Maximum
Y (< 100D) (<300D) (> 500D) (<250D) dimensions
Success Rate 85-95% 90-95% 80-92% 95-98% % achieving target
Parameter . . Performance
Sensitivity High Moderate Very High Moderate variance

Domain-specific performance analysis reveals significant algorithmic specialization across engineering
disciplines, with optimal algorithm selection heavily dependent on problem characteristics and application
requirements. In mechanical engineering applications. In table (2) PSO demonstrates superiority in design
optimization tasks, achieving 92-96% optimality within 35-60 iterations due to its effective handling of continuous

variables in multi-dimensional spaces.

Table 2. Algorithm performance by engineering domain

Engineering Best Performance % Convergence
Domain Problem Type Algorithm Optimal Time Key Advantages
Design PSO 92-96% 35-60 iterations | 5 continuous
Optimization optimization
Mec.hanl(.:al Material Selection ABC 88-94% 60-90 iterations Robugt multi-criteria
Engineering handling
Topology o 80-120 Discrete structure
Optimization ACO 90-95% iterations handling
g?;ggﬁon PSO 94-98% 25-45 iterations Real-time capability
Power Systems  Grid Management I[;I}];bcnd PSO- 95-99% 30-50 iterations Dynamic adaptation
iig;;?gj ABC 89-93% 50-80 iterations Uncertainty handling
Structural Design  PSO 91-95% 40-70 iterations Mu.l tl_.ObJ.eCtlve
optimization
. .. Construction o 60-100 Precedence
Civil Engincering Scheduling ACO 93-97% iterations constraints
Infrasj[ructure Hybrid ACO- 94-98% 45-75 iterations Mixed-variable
Planning PSO problems
PID Tuning PSO 95-98% 20-40 ierations S
Control Systems Robust Control ABC 87-92% 55-85 iterations Uncertainty tolerance
Is(i]:;firfr;cation I:%bcrld PSO- 93-97% 25-50 iterations Model accuracy
r/i?lsc?cl:tcisn PSO 89-94% 30-55 iterations Continuous variables
Wireless Networks ~0Uine ACO 94-98% 70-110 Path construction
Optimization 1terations
oS Management ABC 86-91% 45-75 iterations Multi-objective
g

balance
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Power systems optimization benefits most from PSO's real-time capabilities, particularly in generation dispatch
problems where 94-98% optimality is achieved within 25-45 iterations, while hybrid variants excel in dynamic
grid management scenarios. Civil engineering applications show domain-specific preferences, with ACO's
discrete optimization capabilities proving optimal for construction scheduling (93-97% optimality), while PSO
maintains advantages in structural design problems. Control systems demonstrate PSO's particular strength in
parameter optimization, achieving 95-98% optimality in PID tuning applications within 20-40 iterations. Wireless
network optimization reveals algorithm-problem matching, with ACO's path construction mechanisms achieving
94-98% optimality in routing problems, while PSO excels in continuous resource allocation tasks.

Parameter sensitivity analysis reveals critical algorithmic vulnerabilities and provides essential guidance for
practical implementation across different swarm intelligence approaches. Table (3) shows that PSO exhibits
moderate sensitivity to its inertia weight parameter, with performance variations up to £30% observed across the
optimal range of 0.4-0.9, necessitating careful tuning strategies such as linear decrease schedules. The cognitive
and social coefficients (ci1, cz) demonstrate lower sensitivity (£20%), with fixed values of 2.0 proving adequate
for most applications. ABC's colony size parameter shows moderate impact (+25%) with recommended ranges of
3xD to 5xD, while the limit parameter emerges as highly critical with £35% performance variance, requiring
careful setting at approximately 1.5xD. ACO demonstrates the highest parameter sensitivity, particularly for
pheromone persistence (p) with performance variations exceeding +45%, making it the most challenging
algorithm to tune effectively. The alpha and beta parameters also exhibit high sensitivity (+30-35%), requiring
domain-specific optimization. These findings indicate that while PSO offers the most forgiving parameter
landscape for practitioners, ACO's superior performance potential comes at the cost of significantly increased
tuning complexity.

Table 3. Parameter sensitivity analysis

. Optimal Performance Tuning Engineering
Algorithm Parameter Range Impact Difficulty Recommendation
Inertia Weight (w) ~ 0.4-0.9 High (£30%)  Moderate glgfgi decreasing:
PSO Cognitive Coeff. (c1) 1.5-2.5 Moderate (+20%) Low Fixed at 2.0
Social Coeff. (c2) 1.5-2.5 Moderate (+20%) Low Fixed at 2.0
Population Size 20-100 Low (x15%) Low 2xD to 5xD
Colony Size 50-200 Moderate (+25%) Low 3xD to 5xD
ABC Limit Parameter D to 2xD High (£35%) High 1.5xD
Max Cycles 500-2000 Low (£10%) Low Problem dependent
Egeromone Persist. 0.1-0.3 Very High (+45%) Very High 0.2 for most problems
ACO Alpha () 1-3 High (£30%) High 1.0
Beta (B) 2-5 High (£35%) High 3.0
Ant Population 10-50 Moderate (+20%) Moderate Problem size dependent
Table 4. Computational complexity and resource requirements
Aleorithm Time Space Memory Usage CPU Parallelization
g0 Complexity Complexity (MB) Utilization Efficiency
PSO O(NXDxT) O(NxD) 2-10 85-95% Excellent (95-98%)
ABC O(2NxDxT) O(2NxD) 5-15 75-85% Good (80-90%)
ACO O(N2xDxT) O(NxD?) 10-50 60-75% Moderate (60-75%)
LYPHAPSO- oENxDxT)  O@N*D) 8-25 80-90%  Good (85-92%)
EYPHAPSO- oexpx) oD 1560 70-80%  Moderate (65-80%)

N = Population Size, D = Problem Dimension, T = Iterations

Computational complexity analysis reveals fundamental trade-offs between algorithmic sophistication and
resource efficiency, with significant implications for practical deployment across different hardware constraints.
As shown in Table (4), PSO maintains the most favorable complexity profile with O(NxDxT) time complexity
and minimal memory requirements (2-10 MB), achieving excellent CPU utilization (85-95%) and outstanding
parallelization efficiency (95-98%). This makes PSO particularly suitable for resource-constrained environments
and real-time applications. ABC’s doubled complexity O(2NxDXT) reflects its dual-phase search mechanism,
resulting in moderate memory usage (5-15 MB) and good parallelization potential (80-90%). ACO exhibits the
highest computational overhead with O(N*xDxT) complexity due to pheromone matrix operations, requiring
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substantial memory allocation (10-50 MB) and showing limited parallelization efficiency (60-75%). Hybrid
approaches necessarily increase computational requirements, with PSO-ABC consuming O(3NxDxT) complexity
and 8-25 MB memory, while maintaining reasonable parallelization efficiency (85-92%). These complexity
characteristics suggest that algorithm selection must carefully balance performance requirements against available
computational resources, with PSO offering the best efficiency-performance ratio for most practical applications.

Problem characteristic analysis provides a systematic framework for algorithm selection based on optimization
landscape features, revealing clear algorithmic specializations and limitations. In table (5), PSO demonstrates
exceptional suitability for continuous variable problems but requires significant modification for discrete
optimization tasks, while maintaining excellent performance in low-dimensional spaces (<50 dimensions) but
degrading rapidly in high-dimensional problems. ABC exhibits superior versatility, handling multimodal
landscapes effectively while maintaining good performance across mixed-variable problems and showing
particular strength in noisy function optimization due to its inherent randomization mechanisms. ACO's discrete
optimization capabilities make it the preferred choice for combinatorial problems and constrained optimization
scenarios, with good scalability for high-dimensional discrete spaces, though requiring adaptation for continuous
variables. Dynamic optimization problems favor ABC's exploration capabilities, while real-time constraints
strongly favor PSO's rapid convergence characteristics. Multi-objective optimization scenarios benefit from
specialized variants (MOPSO, MOABC) rather than standard implementations. These findings indicate that
successful algorithm deployment requires careful matching of algorithmic strengths to problem characteristics,
with hybrid approaches offering potential solutions for problems exhibiting mixed characteristics.

Table 5. Problem characteristics and algorithm suitability

Problem characteristic PSO suitability ABC . ACO suitability Recommended approach
suitability

Continuous Variables Excellent Good Poor* PSO or Hybrid PSO-ABC

Discrete Variables Poor* Moderate Excellent ACO or Binary PSO

Mixed Variables Moderate Good Good Hybrid PSO-ACO

Low Dimensionality (<50) Excellent Excellent Good Any algorithm

High Dimensionality (>200) Poor Moderate Good** ABC or Decomposition

Multimodal Landscape Moderate Excellent Good ABC or Hybrid

Noisy Functions Moderate Excellent Moderate ABC with larger population

Expensive Evaluations Good Excellent Moderate ABC with surrogate models

Real-time Constraints Excellent Moderate Poor PSO or Fast PSO variants

Dynamic Optimization Good Excellent Moderate ABC or Adaptive PSO

Constrained Problems Moderate Good Excellent ACO or Constraint handling

Multi-objective Good Excellent Good MOPSO, MOABC, or NSGA-II

*Requires modification/adaptation, **Depends on problem structure

Table 6. Statistical performance comparison (benchmark functions)

Function Algorithm Best Mean Std Success Rate  Convergence
Type Fitness Fitness Deviation (%) (Iter.)
PSO 1.2e-15 3.4e-12 2.1e-11 100 45+8
Unimodal ABC 2.1e-12 1.8e-09 4.5e-09 97 78 £ 15
ACO 1.5e-08 3.2e-06 1.2e-05 89 145 +£25
PSO 2.1e-03 1.8e-02 3.4e-02 73 125 +35
Multimodal ~ ABC 1.5e-05 2.3e-04 8.9¢-04 91 156 +28
ACO 3.4e-04 1.2e-03 2.8e-03 85 198 +42
PSO 0.15 0.45 0.68 68 185+ 55
Noisy ABC 0.08 0.23 0.31 84 224 + 38
ACO 0.12 0.38 0.52 76 267 £48
PSO 0.02 0.08 0.15 72 165 +45
Constrained  ABC 0.01 0.04 0.07 86 198 +32
ACO 0.003 0.01 0.02 92 156 +28

Statistical performance evaluation across standardized benchmark functions provides rigorous quantitative
evidence of algorithmic capabilities and limitations under controlled conditions, as shown in Table (6). For
unimodal functions, PSO achieves superior convergence with best fitness values reaching 1.2e-15 and 100%
success rate within 45+8 iterations, demonstrating its effectiveness in exploitation-focused scenarios. ABC shows
moderate performance on unimodal functions (best fitness 2.1e-12) but excels in multimodal environments,
achieving 91% success rate with significantly better consistency (standard deviation 8.9e-04) compared to PSO's
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3.4e-02. ACO demonstrates particular strength in constrained optimization, achieving the best performance (0.003
best fitness, 92% success rate) despite slower convergence (156+28 iterations). Noise tolerance analysis reveals
ABC's superiority with lowest fitness values (0.08) and highest success rate (84%) in noisy environments, while
PSO's performance degrades significantly (0.15 best fitness, 68% success rate). These statistical results confirm
that algorithmic selection should be based on problem characteristics, with PSO optimal for smooth, unimodal
landscapes, ABC preferred for multimodal or noisy environments, and ACO superior for heavily constrained
problems.

Implementation complexity analysis reveals significant practical barriers that influence algorithmic adoption in
industrial settings, extending beyond pure performance metrics to encompass development and maintenance
considerations. In table (7), PSO demonstrates the lowest implementation barrier with simple velocity update
equations, minimal parameter requirements, and excellent code maintainability, contributing to its widespread
industrial adoption. The algorithm benefits from extensive library availability, comprehensive documentation, and
large community support, reducing development time and training requirements. ABC presents moderate
implementation complexity with its three-phase structure (employed, onlooker, scout bees) requiring more
sophisticated coding but remaining manageable for most development teams.

ACO exhibits the highest implementation complexity due to intricate pheromone management, complex
probability calculations, and challenging debugging procedures, requiring substantial algorithmic expertise and
longer development cycles. Integration difficulty follows similar patterns, with PSO easily incorporating into
existing optimization frameworks while ACO demands significant architectural modifications. These practical
considerations often override pure performance advantages, explaining PSO's dominance in industrial
applications despite potential performance limitations. The analysis suggests that successful algorithm
deployment must balance performance requirements against available development resources and organizational
capabilities.

Table 7. Implementation and practical considerations

Consideration PSO ABC ACO Implementation Notes

Implemeptatlon Low Moderate  High PSO: Simple velocity updates; ACO: Complex
Complexity pheromone management

Parameter Tuning Effort {\J/F(:(Vi-era te Moderate  High ACO requires extensive parameter optimization
Code Maintainability Excellent Good Moderate PSO has fewer algorithmic components

Library Availability Excellent Good Good Many open-source implementations available
Integration Difficulty Low Moderate  High PSO easily integrated into existing systems
Debugging Complexity Low Moderate  High ACO behavior harder to trace and debug
Documentation Quality  Excellent Good Moderate PSO most widely documented

Community Support Excellent Good Good Large research and practitioner communities
Industry Adoption High Moderate  Moderate PSO most commonly used in industry

Training Requirements  Low Moderate  High ACO requires deeper algorithmic understanding

Strategic algorithm selection guidelines synthesize performance characteristics, implementation considerations,
and application requirements into practical decision-making frameworks for engineering practitioners, as shown
in table (8). For rapid prototyping scenarios, PSO emerges as the optimal choice due to its simple implementation,
good default performance, and minimal tuning requirements, enabling quick feasibility studies and concept
validation. Production systems benefit from ABC’s consistent performance and robustness, while hybrid PSO-
ABC approaches offer enhanced reliability for critical applications. Real-time optimization strongly favors PSO
variants due to superior convergence speed, while high-reliability systems requiring consistent results across
multiple runs should prioritize ABC or multi-run PSO strategies.

Complex constraint handling applications naturally align with ACO’s capabilities, though constraint-handling
PSO variants may offer computational advantages. Large-scale optimization problems exceeding 200 dimensions
require careful consideration, with ABC showing better scalability characteristics than standard PSO, though
decomposition approaches may prove necessary. Multi-objective scenarios demand specialized variants
(MOABC, MOPSO) rather than single-objective algorithms, while dynamic environments favor ABC’s tracking
capabilities or adaptive PSO implementations. These guidelines emphasize that optimal algorithm selection
requires comprehensive consideration of problem characteristics, performance requirements, resource constraints,
and organizational capabilities rather than relying solely on benchmark performance metrics.
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Table 8. Recommended selection guidelines

Application scenario Primary choice Alternative Justification

. . Fast implementation and good default
Quick prototyping PSO ABC performance
Production systems ABC Hybrid PSO-ABC Robust and consistent performance
Real-time optimization PSO Fast PSO variants Superior convergence speed
High-reliability systems  ABC Multi-run PSO Consistent results across runs
Complex constraints ACO Constraint-handling PSO  Natural constraint incorporation
Large-scale problems ABC Decomposition approaches Better scalability characteristics
Multi-objective MOABC MOPSO Balanced exploration-exploitation
Dynamic environments ABC Adaptive PSO Superior tracking capabilities
]l;lllr(lil;zd computational PSO Surrogate-assisted ABC  Fastest convergence per evaluation
Unknowr} p}roblem ABC Hybrid approaches Most robust general-purpose
characteristics performance

Challenges and Limitations of Swarm Intelligence in Engineering Applications

While swarm intelligence (SI) algorithms have demonstrated considerable success across engineering domains,
their deployment is not without limitations. These challenges are essential to address in practical implementations
and future algorithmic developments.

1. Premature Convergence
= Sl algorithms, especially standard PSO and ACO, often suffer from early convergence to local optima in
complex, multimodal landscapes. This limits their exploration capacity, particularly in high-dimensional
problems.
= Suggested Mitigation: Use of diversity-preserving techniques (e.g., multi-swarm, adaptive inertia) and
hybridization.
2. Sensitivity to Parameter Settings
= Performance is highly sensitive to algorithm-specific parameters (e.g., inertia weight in PSO, pheromone
evaporation rate in ACO).
= Risk: Poor tuning may result in suboptimal performance or failure to converge.
= Solution: Adaptive or self-tuning mechanisms (Sissodia et al., 2025b).
3. Scalability Limitations
= As problem dimensionality increases (D >200), PSO and ACO face memory and time complexity issues
due to population-based or pheromone-tracking mechanisms.
= ABC shows better scalability but still suffers from computational burden in high-precision contexts.
4. Computational Overhead of Hybrids
= Although hybrid algorithms often enhance solution quality, they impose increased complexity and
development time.
= This makes them less attractive for real-time or embedded system applications unless parallelized
efficiently.
5. Lack of Theoretical Guarantees
*  Most SI algorithms are heuristic by nature, with limited convergence proofs or stability analysis. This
raise concerns in safety-critical domains (e.g., aerospace, medical devices).
= (Calls exist for more rigorous theoretical frameworks (Liu et al., 2024a).
6. Real-World Integration Gaps
*  Bridging algorithmic research with industrial deployment remains a challenge due to lack of modular
libraries, insufficient documentation, or domain-specific tuning guides.

Future Directions and Conclusions

Emerging trends in swarm intelligence research indicate continued evolution toward more sophisticated, adaptive,
and application-specific algorithms(Phadke & Medrano, 2023). Integration with artificial intelligence techniques,
particularly machine learning and deep learning approaches, represents a major direction for future development.
These hybrid approaches promise enhanced performance in complex engineering optimization problems while
providing intelligent adaptation capabilities.
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Quantum-inspired swarm intelligence algorithms represent an emerging research frontier with potential for
significant performance improvements (Priyadarshini, 2024). Quantum computing principles applied to swarm
intelligence optimization may enable exploration of solution spaces that are intractable for classical algorithms.
Early research indicates promising results for specific problem classes, suggesting potential future applications in
complex engineering optimization scenarios.

Real-time optimization capabilities continue to evolve, with advanced swarm intelligence implementations
demonstrating improved performance in dynamic environments (Immaneni, 2021). Future developments in real-
time swarm optimization will likely focus on predictive adaptation strategies, efficient online learning
mechanisms, and improved convergence acceleration techniques that enable effective performance in rapidly
changing optimization landscapes.

Research gaps requiring attention include theoretical convergence analysis for hybrid swarm algorithms,
standardized performance evaluation frameworks for engineering applications, and improved techniques for
handling high-dimensional optimization problems(Liu et al., 2024b). Theoretical foundations for swarm
intelligence algorithms remain incomplete, particularly for hybrid approaches that combine multiple optimization
techniques.

Practical implications for engineers include increased availability of powerful optimization tools, improved
solution quality for complex design problems, and enhanced capability for handling multi-objective optimization
scenarios(Guo & Zhang, 2022). Engineering practice will likely benefit from continued development of user-
friendly implementation frameworks, standardized algorithm libraries, and application-specific optimization tools
that leverage swarm intelligence techniques.

The five-year review period from 2020 to 2025 demonstrates substantial advancement in swarm intelligence
applications across diverse engineering domains. Performance improvements, algorithmic innovations, and
expanding application areas indicate continued growth potential for these optimization techniques. Future
engineering systems will likely incorporate swarm intelligence algorithms as standard components for addressing
complex optimization challenges in autonomous systems, smart infrastructure, and sustainable technology
development.

The comprehensive analysis presented in this review demonstrates that swarm intelligence algorithms have
matured into practical, effective optimization tools for modern engineering applications(Xu et al., 2023).

Continued research and development efforts will likely further enhance their capabilities and expand their
applicability to emerging engineering challenges.
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