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Abstract: Modern engineering systems increasingly encounter complex, high-dimensional optimization 

problems that challenge traditional solution methods. Swarm intelligence (SI) algorithms, inspired by the 

collective behavior of biological systems, offer robust and adaptable alternatives. This review systematically 

explores the development and application of key SI techniques-Particle Swarm Optimization (PSO), Artificial 

Bee Colony (ABC), and Ant Colony Optimization (ACO)-within engineering domains from 2020 to 2025. 

Drawing on recent literature, the paper identifies major application areas in mechanical, structural, power, energy, 

civil, and infrastructure engineering. It evaluates algorithmic performance trends, emphasizing the superior 

convergence and robustness of hybrid approaches, along with their growing integration with machine learning. 

The review also highlights advances in multi-objective optimization and the expanding use of SI in emerging 

fields such as IoT and cybersecurity. The findings underscore the increasing significance of SI in next-generation 

engineering systems, particularly in autonomous technologies and smart infrastructure, while outlining key 

directions for future research and practical deployment. 
 

Keywords: Swarm intelligence, Engineering optimization, Particle swarm optimization, Artificial bee colony, 

Ant colony optimization, Hybrid algorithms 

 

 

Introduction 

 

Subdivide text into unnumbered sections, Modern engineering systems face unprecedented complexity challenges 

that traditional optimization approaches struggle to address effectively. The exponential growth in system scale, 

multi-objective requirements, and real-time constraints has created substantial demand for robust, adaptable 

optimization methodologies (Tartibu, 2025). Swarm intelligence algorithms, inspired by collective behaviors 

observed in natural systems, have emerged as compelling solutions to these challenges. Swarm intelligence 

applications have seen phenomenal growth in the engineering community within the last five years due to 

improvements in hardware and software complexity (Paul et al., 2024). These bio-inspired algorithms show 

unrivaled versatility in tackling a number of contemporary engineering problems that are characterized by 

complex non-linear, multi-modal optimization landscapes, such as optimizing renewable energy systems and 

managing communication networks (Beegum et al., 2023). 

http://www.isres.org/
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This thorough review discusses the increasing importance of systematic evaluation of swarm intelligence 

applications for engineering applications between 2020 and 2025. It covers all the core algorithm families for the 

Particle Swarm Optimization, Artificial Bee Colony, and Ant Colony Optimization and their applications in wide 

range of engineering ons (Selvarajan, 2024). Using systematic literature review techniques, this paper investigates 

all related peer-reviewed publications from three major engineering databases, IEEE Xplore, ScienceDirect and 

SpringerLink. Our paper is organized around algorithmic structure that lays out fundamental principles, domain-

specific applications, and critical take on trends. This book focuses on implementation strategies, performance 

characteristics, and practical issues of interest to practicing engineers for each application domain. 

 

 

Swarm Intelligence Fundamentals and Classification 
 

Swarm intelligence algorithms operate on the principle of collective behavior emergence from simple individual 

interactions(Tang et al., 2021). These algorithms demonstrate particular effectiveness in engineering optimization 

due to their inherent parallelism, robustness to local optima, and adaptability to dynamic problem landscapes. 

Particle Swarm Optimization represents the most widely adopted swarm intelligence technique in engineering 

applications (Gad, 2022). PSO algorithms simulate social behavior patterns observed in bird flocking and fish 

schooling, where individual particles adjust their positions based on personal experience and collective 

knowledge. The fundamental PSO update equations govern velocity and position modifications, incorporating 

inertia weight, cognitive coefficient, and social coefficient parameters that significantly influence convergence 

characteristics. Artificial Bee Colony algorithms model the foraging behavior of honeybee colonies, employing 

three distinct bee categories: employed bees, onlooker bees, and scout bees(Wang et al., 2022). The ABC 

framework demonstrates particular strength in maintaining exploration-exploitation balance through its 

probabilistic selection mechanism and abandonment criterion. Engineering applications benefit from ABC's 

ability to escape local optima while maintaining solution quality throughout the optimization process. 

 

Ant Colony Optimization techniques derive inspiration from ant foraging behavior, utilizing pheromone trail 

mechanisms to guide solution construction(Yahia et al., 2020a). ACO algorithms excel in combinatorial 

optimization problems frequently encountered in engineering design, particularly in path planning, scheduling, 

and resource allocation scenarios. The pheromone update rules and heuristic information integration provide 

effective mechanisms for incorporating domain-specific knowledge. Algorithm selection criteria for engineering 

applications depend on problem characteristics including dimensionality, constraint complexity, and real-time 

requirements (Jiao et al., 2023). Multi-modal optimization problems typically favor PSO variants due to their 

superior exploration capabilities, while combinatorial problems often benefit from ACO implementations. ABC 

algorithms demonstrate consistent performance across diverse problem types, making them suitable for general-

purpose engineering optimization. 

 

Performance evaluation frameworks for swarm intelligence algorithms require careful consideration of multiple 

metrics including convergence speed, solution quality, computational efficiency, and robustness(Halim et al., 

2021). Standard benchmark functions provide baseline comparisons, but engineering applications necessitate 

domain-specific performance indicators that reflect practical implementation constraints and objectives. To 

provide a conceptual structure for understanding the diversity of swarm intelligence (SI) techniques and their 

integration into engineering domains, Figure 1 presents a visual taxonomy that categorizes SI algorithms based 

on their biological inspiration, core mechanism, and typical engineering applications. 

 

 
Figure 1. Taxonomy of swarm intelligence algorithms in engineering 
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Engineering Application Domains 
 

Mechanical and Structural Engineering 

 

Swarm intelligence algorithms have been increasingly adopted in mechanical and structural engineering 

applications to address complex design optimization challenges (Han & Sun, 2024). Design optimization 

problems in mechanical systems often involve multi-objective considerations, including weight minimization, 

stress distribution, and manufacturing constraints. Swarm intelligence techniques are particularly effective in 

managing these competing objectives while adhering to stringent safety requirements. 

 

Material selection optimization is a critical application area where swarm intelligence provides substantial value 

(Xu et al., 2023). Traditional methods—such as weighted decision matrices—often fall short in capturing the 

complex interdependencies among material properties and application-specific requirements. In contrast, swarm-

based approaches enable a comprehensive exploration of the material property space, accounting for 

manufacturing constraints, cost factors, and performance specifications simultaneously. 

 

Construction site layout optimization has also emerged as a prominent domain for swarm intelligence applications 

(Xu et al., 2023). Construction projects require the spatial coordination of equipment, materials, and temporary 

facilities, all of which influence project efficiency and safety. Ant Colony Optimization (ACO) algorithms have 

shown particular effectiveness in this context, as they efficiently handle discrete spatial arrangements while 

incorporating safety distance constraints and workflow optimization goals. 

 

Gear train design optimization exemplifies the application of swarm intelligence in mechanical component design 

(Jenis et al., 2023). Traditional gear train design typically relies on iterative methods that risk convergence to 

suboptimal solutions. Particle Swarm Optimization (PSO) techniques, however, facilitate a more exhaustive 

search of gear ratio combinations while satisfying torque transmission requirements, space limitations, and 

manufacturing constraints. Recent approaches have adopted multi-objective formulations that simultaneously 

optimize power transmission efficiency and gear train compactness. 

 

Structural topology optimization has also seen notable advancements through swarm intelligence, particularly in 

scenarios that require innovative structural configurations (Kwok, 2022). These algorithms enable the exploration 

of unconventional layouts that traditional design methods might overlook. Their capability to handle discrete 

design variables makes them especially suitable for truss optimization problems, where selecting appropriate 

cross-sectional properties is essential. 

 

 

Power Systems and Energy Engineering 

 

Extensive progress has been made in swarm intelligence applications in power systems and energy engineering, 

which investigate the complex behaviour of modern electrical grids and the need for their integration with 

renewable energy sources (Cavus, 2025). Photovoltaic system optimization is one of the most important 

application areas that can be accomplished by using swarm intelligence algorithms to optimize several objectives 

together such as power generation, reliability, and economic aspects, etc. 

 

This means the issue of solar panel placement optimization consists of complicated geometric and environmental 

parameters that generally traditional optimization methods fail to manage those topics effectively (Soomar et al., 

2022). Particle Swarm Optimisation (PSO) algorithms exhibit remarkable performance in optimising Large PV 

arrays while taking into account shading impacts, installation limitations, and feasibility of maintenance. Newer 

designs include dynamic shading analysis based on seasonal changes incorporated with the effect of surrounding 

structures. 

 

Power Grid Management applications are a new power grid management application that smartly integrates swarm 

intelligence algorithms such as hydropower, solar-panel array optimization, and many other types for optimizing 

real-time generation dispatch (Albogamy et al., 2022). The dynamic nature of electrical demand and renewable 

power generation creates landscapes of optimization that are actually changeable in real time. So we need adaptive 

algorithms to track the optimum solution from continuously changing environments. The particular merit of 

Artificial Bee Colony algorithms lies in their ability to keep various solutions while moving resources to cope 

rapidly with changes in system conditions (Kuo, 2021). 
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The interface between emerging Smart Grid application areas and swarm intelligence is a brand-new frontier for 

developers! Smart grid systems need to co-ordinate not only with distributed energy sources, demand response 

programs and energy storage systems (Tang et al., 2021). But also fix that the programme presents a unified face 

to the world, without energy silos. Assembly line operations on a grand scale: use tendencies of localisation and 

consolidation to bring power distribution control points down to where they are needed more directly.  

 

Apply these methods to balance electricity supply and demand across entire networks of consumers at any given 

moment, including smoothing out fluctuations in voltage caused by large frequency changes (Sina et al., 2021). 

Integration of energy from renewable sources presents new challenges to this field. Wind and solar power systems 

have an intrinsic variability that requires forecasts produced by intelligent. The example of combining multiple 

algorithms types to tackle renewable energy power system integration shows that hybrid swarm intelligence 

methods achieve superior performance (Yousef et al., 2023). 

 

Energy storage system optimization has emerged as a critical application area for swarm intelligence algorithms( 

Wang et al., 2024). Battery energy storage systems require complex optimization of charge-discharge cycles, 

state-of-charge management, and degradation minimization. Swarm intelligence approaches enable 

comprehensive optimization of energy storage operations while considering multiple time scales from real-time 

power balancing to long-term capacity planning. 

 

 

Civil and Infrastructure Engineering 

 

Civil and infrastructure engineering applications have increasingly adopted swarm intelligence algorithms for 

addressing large-scale optimization problems characteristic of infrastructure development and 

management(Ghaemifard & Ghannadiasl, 2024). Structural design optimization encompasses a broad range of 

applications from building design to bridge construction, where swarm intelligence algorithms provide effective 

solutions for multi-objective optimization problems involving structural performance, cost minimization, and 

construction feasibility. 

 

Bridge design optimization exemplifies the application of swarm intelligence in structural engineering(Martinez-

Muñoz et al., 2022). Modern bridge design requires simultaneous consideration of structural performance, 

aesthetic considerations, environmental impact, and construction logistics. Particle Swarm Optimization 

algorithms demonstrate effectiveness in bridge design optimization by exploring design variable spaces that 

include geometric parameters, material specifications, and construction sequencing decisions. 

 

Construction scheduling and resource allocation problems represent another significant application domain for 

swarm intelligence techniques(Ghoroqi et al., 2024). Construction projects involve complex interdependencies 

between activities, resource constraints, and time limitations that create challenging optimization environments. 

Ant Colony Optimization algorithms show particular strength in construction scheduling applications due to their 

ability to handle precedence constraints and resource limitations while optimizing project duration and cost 

objectives(Shen & Wu, 2025). 

 

Infrastructure network planning applications leverage swarm intelligence algorithms for optimizing transportation 

networks, utility distribution systems, and communication infrastructure(Alkinani et al., 2022). These problems 

typically involve large-scale discrete optimization challenges where traditional approaches may become 

computationally prohibitive. Swarm intelligence algorithms provide scalable solutions that can handle network 

planning problems involving thousands of nodes and connections. 

 

There are SI methods that have been applied to optimize pavement design using several performance indices 

including structural capacity, durability, and life cycle costs (Kang et al., 2025). Traditional pavement design 

processes often heavily rely on simplified design methods which may not really maximize the long-term 

performance of the pavement. But with swarm intelligence algorithms all pavement layers' configuration is taken 

into account, encompassing traffic load patterns and climatic conditions in a comprehensive manner and also 

incorporating maintenance requirements. 

 

Water distribution system optimization represents a critical application area where swarm intelligence algorithms 

address complex hydraulic design problems(Pham et al., 2023). Water distribution networks require careful 

balancing of pipe sizing, pump placement, and storage facility design to achieve adequate service levels while 

minimizing infrastructure costs. Multi-objective swarm intelligence approaches demonstrate effectiveness in 
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water system optimization by simultaneously addressing hydraulic performance, economic objectives, and 

reliability requirements. 

 

 

Control Systems and Automation 

 

Control systems and automation applications have embraced swarm intelligence algorithms for addressing 

complex parameter optimization and system coordination challenges(Bhimana & Ravindran, 2024). Process 

parameter optimization represents a fundamental application area where swarm intelligence techniques provide 

superior performance compared to traditional tuning methods. Industrial processes often involve multiple 

interacting control loops with complex dynamics that require sophisticated optimization approaches. 

 

PID controller tuning applications demonstrate the effectiveness of swarm intelligence algorithms in control 

system optimization(Joseph et al., 2022). Traditional PID tuning methods may struggle with complex process 

dynamics, time delays, and nonlinear characteristics commonly encountered in industrial applications. Particle 

Swarm Optimization algorithms provide robust frameworks for PID parameter optimization that consider multiple 

performance criteria including settling time, overshoot, and steady-state error simultaneously. 

 

Robotic path planning and coordination applications leverage swarm intelligence algorithms for managing 

complex navigation problems in dynamic environments(Nguyen, 2024). Multi-robot coordination requires 

sophisticated algorithms capable of handling real-time constraints while optimizing collective objectives such as 

task completion time and energy consumption. Swarm intelligence approaches provide natural frameworks for 

robot coordination by modeling individual robots as swarm agents that cooperate to achieve system-wide 

objectives. 

 

Industrial automation and scheduling applications benefit from swarm intelligence implementations that address 

complex resource allocation and timing optimization problems(Del Gallo et al., 2023). Manufacturing systems 

involve multiple machines, workers, and materials that must be coordinated to achieve production objectives while 

satisfying quality requirements and delivery schedules. Ant Colony Optimization algorithms demonstrate 

particular effectiveness in manufacturing scheduling applications due to their ability to handle complex 

precedence constraints and resource limitations. 

 

Model predictive control applications have increasingly incorporated swarm intelligence algorithms for solving 

online optimization problems(Tang et al., 2021). Model predictive control requires repeated solution of 

optimization problems within strict time constraints, creating computational challenges for traditional 

optimization approaches. Swarm intelligence algorithms provide efficient solutions for MPC applications by 

leveraging population-based search strategies that can be readily parallelized. 

 

Fault detection and diagnosis applications utilize swarm intelligence algorithms for optimizing sensor placement, 

feature selection, and diagnostic model parameters (Nezamivand Chegini et al., 2022). Industrial systems require 

robust fault detection capabilities that can identify potential problems before they result in system failures. Swarm 

intelligence approaches enable comprehensive optimization of fault detection systems while considering multiple 

performance criteria including detection accuracy, false alarm rates, and computational requirements. 

 

 

Wireless Networks and Communications 

 

Wireless networks and communications applications have witnessed significant growth in swarm intelligence 

implementations, driven by increasing network complexity and performance requirements(Al-Mousawi, 2021). 

Network optimization and resource allocation problems represent primary application areas where swarm 

intelligence algorithms demonstrate superior performance compared to traditional approaches. To modern 

wireless networks mean a variety of access technologies and equipment, as well as changing ways for data to 

flow. Then there's another thing-socioeconomic factors which create complex optimization problems. Indeed, we 

cannot expect all future network traffic patterns and their features at any given time period to be consistent with 

past ones. 

 

Spectrum management in next-generation networks has become a major focus area for profundity techniques 

(Pham et al., 2021). Cognitive radio networks need intelligent spectrum management algorithms that can adapt to 

changes in the availability of available spectrum while at the same time ensuring that network capacity is 

maximized and user satisfaction remains high. Particle swarm optimization algorithms in the area of spectrum 
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allocation are particularly effective, because they allow for optimal dynamic distribution of spectrum assignments 

based on interference constraints and quality of service stipulations. 

 

Also, SI algorithms have been adapted to propose solutions for resource allocation and service placement 

decisions in edge computing and Internet-of-Things applications (Bey et al., 2024). When it comes to edge 

computing systems, we need to allocate precisely the computational resources, network bandwidth, and latency 

needs to provide an acceptable quality of service. Swarm intelligence-based approaches are powerful models for 

improving edge computing and have significant advantage at embracing the distributed nature of IoT and allowing 

multiple edge nodes to coordinate with each other. 

 

Wireless sensor network optimization represents another significant application domain for swarm intelligence 

algorithms(Tang & Nie, 2024). Sensor networks require careful optimization of node placement, routing 

protocols, and energy management strategies to achieve extended network lifetime while maintaining adequate 

sensing coverage. Artificial Bee Colony algorithms demonstrate effectiveness in sensor network applications due 

to their ability to balance exploration and exploitation while considering multiple optimization objectives. 

 

Network security applications utilize swarm intelligence algorithms for optimizing intrusion detection systems, 

encryption key management, and security policy enforcement(Nasir et al., 2022). Network security requires 

continuous adaptation to evolving threat landscapes while maintaining acceptable system performance. Swarm 

intelligence approaches enable dynamic optimization of security parameters while considering the trade-offs 

between security effectiveness and system performance. 

 

Swarm intelligence implementations have been shown to offer substantial benefits for optimizing complex 

resource allocation and engineering tasks in multimedia communications (Darwich & Bayoumi, 2025). In order 

to ensure such quality of service (QoS) requirements such as bandwidth, latency, and reliability characteristics, 

multimedia applications lead to difficult optimization problems in resource-constrained networks. It is observed 

that multi-objective approaches of swarm intelligence are effective in both QoS optimization under changing 

network conditions and capable of optimizing simultaneously multiple performance criteria. 

 

 

Emerging and Interdisciplinary Applications 

 

Novel and cross-disciplinary applications suggest new exciting frontiers for swarm intelligence implementations 

and showing the versatility and adaptability of these algorithms to various interdisciplinary engineering fields 

(Nguyen, 2024). Swarm intelligence methods have gained significant attention in the field of biomedical 

engineering for solving real-life multi-dimensional complex optimization problems such as medical device design 

and process, therapeutic treatment planning, and optimization of a diagnostic system, and so on. 

 

Swarm intelligence algorithms are used for optimization related to medical image processing applications such 

as; image segmentation, feature extraction, and pattern recognition tasks (Xu et al., 2023). Medical imaging 

systems must process complex algorithms that are noise resistant, artifact resistant and anatomical variant 

resistant to yield diagnostic information. SWARM-INTELLIGENCE-S-based methods effectively illustrate the 

specific parameter space in medical imaging applications while being computationally efficient. 

 

Drug discovery and drug engineering practices use swarm intelligence algorithms to optimize molecular design, 

the receptor docking method, and then any formulations of drug delivery systems (Vora et al., 2023). With 

complex multi-objective optimization problems, pharmaceutical production is where traditional methods are 

unable to cope due to such large parameter space and competing goals. Particle Swarm Optimization algorithm in 

its developments has shown the pharmaceutical application: efficient exploration for molecular configurations 

space, while considering multiple drug efficacy and safety criteria. 

 

Environmental system optimization has become an important application area of swarm intelligence techniques 

(Tang et al., 2021). Environmental engineering problems could often include a variety of phenomena from 

physical, chemical and biological processes together to produce difficult optimization landscapes. It is also used 

for air quality management, water treatment optimization and waste management systems, in what are soon to 

become embarrassing next steps as the funds change hands of those who would make a move with them.  

 

By integrating elements of the environment in which an algorithm operates, including multiple environmental 

objectives instead of only one while still respecting both regulatory constraints and economic considerations, 

swarm intelligence breeds successes. Cybersecurity and network security applications represent rapidly growing 
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domains for swarm intelligence implementations (Irfan, 2024). Cybersecurity systems require continuous 

adaptation to evolving threat patterns while maintaining system performance and user accessibility. Swarm 

intelligence algorithms provide effective frameworks for cybersecurity optimization by enabling dynamic 

adaptation of security parameters while considering the balance between security effectiveness and system 

usability. 

 

Supply chain optimization applications leverage swarm intelligence algorithms for addressing complex logistics 

and inventory management problems(Nweje & Taiwo, 2025). Modern supply chains involve multiple suppliers, 

manufacturers, distributors, and customers that must be coordinated to achieve cost minimization and service level 

objectives. Ant Colony Optimization algorithms demonstrate particular effectiveness in supply chain applications 

due to their ability to handle complex routing and scheduling problems while considering multiple stakeholders 

and constraints. 

 

 

Hybrid and Advanced Swarm Techniques 
 

Recent developments in swarm intelligence have increasingly focused on hybrid approaches that combine 

multiple optimization techniques to leverage complementary strengths and overcome individual algorithm 

limitations(Priyadarshi & Kumar, 2025). The period from 2020 to 2025 has witnessed substantial advancement 

in hybridization strategies that integrate swarm intelligence algorithms with machine learning techniques, 

traditional optimization methods, and domain-specific heuristics. 

 

With careful implementation of swarm intelligence, advanced approaches have been effective in solving complex 

Pareto optimization problems through the years (Harkare et al., 2024). Recent developments of multi-objective 

swarm algorithms involve complex selection, diversity preservation and convergence acceleration techniques, 

which allow to effectively explore the Pareto frontiers even in high-dimensional objective spaces. For engineering 

applications requiring consideration of multiple competing objectives simultaneously, these developments are 

especially timely. 

 

One of the most notable, is the growing trend of an integration of machine learning techniques with swarm 

intelligence implementations on a large scale (Soori et al., 2023). Integration of modes such as swarm 

optimization, neural networks, support vector machines, and significant improvement in hybrid approaches on 

deep learning architectures in complex optimization processes. The integration of machine learning components 

gives solutions adaptive parameter tuning, smart initialization strategies, and predictive guidance that improve the 

convergence characteristics and solution quality from swarm algorithms. 

 

Adaptive mechanisms for parameter control have become a key element in state-of-the-art swarm intelligence 

algorithms (Sissodia et al., 2025a). Classic swarm algorithms usually use time-constant parameters, which can 

be non-optimal during the whole optimization task. More recent strategies include dynamic parameter adjustment 

that adapt the behaviour of the algorithm depending on the actual state of the search process, diversity in the 

population and problem-specific information. These adaptive mechanisms greatly enhance both algorithm 

robustness and performance on a wide range of problem types. 

 

Driven by growing computational needs and the availability of parallel processing platforms, parallel and 

distributed implementations of swarm intelligence have been highlighted (de Melo Menezes et al., 2022; Yahia et 

al., 2020b). The high-performance parallel architecture allows some swarm algorithms to address large-scale 

optimization problems that would be computationally infeasible using sequential implementations. Swarm 

approaches that are distributed also offer a way to increase fault tolerance and scalability for real-time engineering 

applications. 

 

Swarm intelligence algorithms with an enhanced ability to retain memory have more sophisticated methods for 

storing and retrieving information that allow them to perform better than traditional methods in dynamic 

optimization environments (Mohammadpour et al., 2024). These methods keep a record of historical information 

regarding regions in the solution space that have demonstrated potential, which allows for a quick adjustment 

approach as soon as changes in the characteristics of the problem occur. The algorithms enhanced with memory 

illustrate their specific advantages in engineering applications, as in these applications’ optimization landscapes 

can change when the operating conditions or requirements change. 

 

 

Critical Analysis and Performance Evaluation 
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Empirical performance comparison indicates that the effectiveness of swarm intelligence algorithms can vary 

greatly depending on the problem characteristics and implementation strategies (Tang et al., 2021), both across 

different engineering domains. In the continuous optimization problems of moderate dimensionality, Particle 

Swarm Optimization algorithms continuously outperform other techniques, while Ant Colony Optimization 

techniques outperform other combinatorial optimization techniques. The performance of Artificial Bee Colony 

algorithms is robust over several diverse problem types, so it is appropriate for general engineering applications. 

Statical analysis is one of the most common techniques used for implementing these formal methods in real-world 

engineering applications, but it has its own set of challenges, especially due to computational limitations, real-

time requirements, and integration with existing systems (Kopetz & Steiner, 2022). For complex engineering 

models, it may be computationally expensive to perform multiple function evaluations needed for swarm 

intelligence algorithms. Surrogate modelling, parallelisation, and clever initialization strategies alleviate these 

issues at the cost of not requiring the expensive evaluations of, e.g. 

 

The success of implementations of swarm intelligences is dependent on selecting the appropriate algorithm, tuning 

the parameters correctly, and properly formulating the problem (Qawqzeh et al., 2021). However, application 

domains might require specific adaptations of the proposed optimizations along with domain knowledge and 

limits to be incorporated directly into the optimization framework and hence engineering applications are often 

more a hybrid of design and engineering knowledge. In practice, many successful implementations use domain 

knowledge in conjunction with swarm intelligence algorithms to create hybrid designs that transmute algorithmic 

efficiency and engineering insight. 

 

Most of the failure modes in applications of swarm intelligence are attributed to either premature convergence, 

non-adaptive parameter setting or ill-posed problem definitions (Kong et al., 2024). Diversity loss is tackled by 

diversity preservation mechanisms, adaptive parameter control and multi-population approach deals with the 

premature convergence problem. In contrast, parameter sensitivity analysis and robust optimization techniques 

help to determine suitable ranges of parameters that ensure stable and well-performing behavior in a variety of 

problem instances. 

 

Evaluating robustness, which is an essential task, should occur across the widest variety of problem variants, 

noise conditions, and constraints (Nguyen, 2024). Introduction Dynamic optimization problems are pervasive in 

engineering applications, where parameters can be uncertain, and measurement noise and changing operating 

conditions impose dynamic requirements on optimization environments. Practical implementations of swarm 

intelligence are relatively complete, including uncertainty management, constraint management, and adaptation 

strategies to keep performance unchanged under different cases. 

 

In engineering application Performance benchmarking, the various evaluation criteria to be considered are 

solution quality, convergence rate, computational cost, and ease of implementation (Pargaonkar, 2023). While 

standard benchmark functions offer baseline comparisons, performance metrics tailored to engineering are often 

a more accurate reflection of practical implementation needs. Evaluation frameworks should be broad, assessing 

algorithmic performance alongside those features of practical implementation that are relevant to a particular 

branch of engineering. 

 

 

Performance Evaluation Tables for Swarm Intelligence Algorithms 

 

The comparative analysis of fundamental performance metrics reveals distinct algorithmic trade-offs across the 

swarm intelligence paradigms. As shown in table (1), PSO demonstrates superior convergence characteristics, 

achieving 95% optimality within 20-50 iterations while maintaining computational efficiency at O(N×D) 

complexity. However, its scalability limitations become apparent beyond 100 dimensions, and parameter 

sensitivity remains a critical concern with performance variance exceeding 25%.  

 

ABC exhibits enhanced robustness with standard deviation values between 0.05-0.15, making it particularly 

suitable for noisy optimization landscapes, though at the cost of increased computational overhead (O(2N×D)). 

ACO achieves the highest solution quality for discrete problems, maintaining 90-95% optimality with exceptional 

scalability beyond 500 dimensions, but suffers from slow convergence requiring 100-200 iterations. The hybrid 

PSO-ABC approach emerges as the most promising variant, combining rapid convergence (15-40 iterations) with 

superior solution quality (96-99% optimal) and enhanced robustness (σ = 0.03-0.12), albeit with increased 

computational complexity. 
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Table 1. Key performance metrics comparison 

Performance 

Metric 
PSO ABC ACO Hybrid PSO-ABC 

Measurement 

Method 

Convergence 

Speed 

Fast  

(20-50 

iterations) 

Moderate  

(50-100 

iterations) 

Slow  

(100-200 iterations) 

Fast (15-40 

iterations) 

Iterations to 95% 

optimal 

Solution Quality 

High  

(95-98% 

optimal) 

High  

(90-95% 

optimal) 

Very High (90-95% 

optimal) 

Very High (96-99% 

optimal) 

% of global 

optimum 

Computational 

Cost 

Low 

(O(N×D)) 

Moderate 

(O(2N×D)) 
High (O(N²×D)) High (O(3N×D)) Time complexity 

Robustness 

Moderate  

(σ = 0.15-

0.25) 

High  

(σ = 0.05-0.15) 

High  

(σ = 0.08-0.18) 

Very High  

(σ = 0.03-0.12) 
Standard deviation 

Scalability 
Poor  

(< 100D) 

Good  

(< 300D) 

Excellent  

(> 500D) 

Good  

(< 250D) 

Maximum 

dimensions 

Success Rate 85-95% 90-95% 80-92% 95-98% % achieving target 

Parameter 

Sensitivity 
High Moderate Very High Moderate 

Performance 

variance 

 

Domain-specific performance analysis reveals significant algorithmic specialization across engineering 

disciplines, with optimal algorithm selection heavily dependent on problem characteristics and application 

requirements. In mechanical engineering applications. In table (2) PSO demonstrates superiority in design 

optimization tasks, achieving 92-96% optimality within 35-60 iterations due to its effective handling of continuous 

variables in multi-dimensional spaces.  

 

Table 2. Algorithm performance by engineering domain 

Engineering 

Domain 
Problem Type 

Best 

Algorithm 

Performance % 

Optimal 

Convergence 

Time 
Key Advantages 

Mechanical 

Engineering 

Design 

Optimization 
PSO 92-96% 35-60 iterations 

Fast continuous 

optimization 

Material Selection ABC 88-94% 60-90 iterations 
Robust multi-criteria 

handling 

Topology 

Optimization 
ACO 90-95% 

80-120 

iterations 

Discrete structure 

handling 

Power Systems 

Generation 

Dispatch 
PSO 94-98% 25-45 iterations Real-time capability 

Grid Management 
Hybrid PSO-

ABC 
95-99% 30-50 iterations Dynamic adaptation 

Renewable 

Integration 
ABC 89-93% 50-80 iterations Uncertainty handling 

Civil Engineering 

Structural Design PSO 91-95% 40-70 iterations 
Multi-objective 

optimization 

Construction 

Scheduling 
ACO 93-97% 

60-100 

iterations 

Precedence 

constraints 

Infrastructure 

Planning 

Hybrid ACO-

PSO 
94-98% 45-75 iterations 

Mixed-variable 

problems 

Control Systems 

PID Tuning PSO 95-98% 20-40 iterations 
Parameter 

optimization 

Robust Control ABC 87-92% 55-85 iterations Uncertainty tolerance 

System 

Identification 

Hybrid PSO-

ABC 
93-97% 25-50 iterations Model accuracy 

Wireless Networks 

Resource 

Allocation 
PSO 89-94% 30-55 iterations Continuous variables 

Routing 

Optimization 
ACO 94-98% 

70-110 

iterations 
Path construction 

QoS Management ABC 86-91% 45-75 iterations 
Multi-objective 

balance 
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Power systems optimization benefits most from PSO's real-time capabilities, particularly in generation dispatch 

problems where 94-98% optimality is achieved within 25-45 iterations, while hybrid variants excel in dynamic 

grid management scenarios. Civil engineering applications show domain-specific preferences, with ACO's 

discrete optimization capabilities proving optimal for construction scheduling (93-97% optimality), while PSO 

maintains advantages in structural design problems. Control systems demonstrate PSO's particular strength in 

parameter optimization, achieving 95-98% optimality in PID tuning applications within 20-40 iterations. Wireless 

network optimization reveals algorithm-problem matching, with ACO's path construction mechanisms achieving 

94-98% optimality in routing problems, while PSO excels in continuous resource allocation tasks. 

 

Parameter sensitivity analysis reveals critical algorithmic vulnerabilities and provides essential guidance for 

practical implementation across different swarm intelligence approaches. Table (3) shows that PSO exhibits 

moderate sensitivity to its inertia weight parameter, with performance variations up to ±30% observed across the 

optimal range of 0.4-0.9, necessitating careful tuning strategies such as linear decrease schedules. The cognitive 

and social coefficients (c₁, c₂) demonstrate lower sensitivity (±20%), with fixed values of 2.0 proving adequate 

for most applications. ABC's colony size parameter shows moderate impact (±25%) with recommended ranges of 

3×D to 5×D, while the limit parameter emerges as highly critical with ±35% performance variance, requiring 

careful setting at approximately 1.5×D. ACO demonstrates the highest parameter sensitivity, particularly for 

pheromone persistence (ρ) with performance variations exceeding ±45%, making it the most challenging 

algorithm to tune effectively. The alpha and beta parameters also exhibit high sensitivity (±30-35%), requiring 

domain-specific optimization. These findings indicate that while PSO offers the most forgiving parameter 

landscape for practitioners, ACO's superior performance potential comes at the cost of significantly increased 

tuning complexity. 

 

Table 3. Parameter sensitivity analysis 

Algorithm Parameter 
Optimal 

Range 

Performance 

Impact 

Tuning 

Difficulty 

Engineering 

Recommendation 

PSO 

Inertia Weight (w) 0.4-0.9 High (±30%) Moderate 
Linearly decreasing: 

0.9→0.4 

Cognitive Coeff. (c₁) 1.5-2.5 Moderate (±20%) Low Fixed at 2.0 

Social Coeff. (c₂) 1.5-2.5 Moderate (±20%) Low Fixed at 2.0 

Population Size 20-100 Low (±15%) Low 2×D to 5×D 

ABC 

Colony Size 50-200 Moderate (±25%) Low 3×D to 5×D 

Limit Parameter D to 2×D High (±35%) High 1.5×D 

Max Cycles 500-2000 Low (±10%) Low Problem dependent 

ACO 

Pheromone Persist. 

(ρ) 
0.1-0.3 Very High (±45%) Very High 0.2 for most problems 

Alpha (α) 1-3 High (±30%) High 1.0 

Beta (β) 2-5 High (±35%) High 3.0 

Ant Population 10-50 Moderate (±20%) Moderate Problem size dependent 

 

Table 4. Computational complexity and resource requirements 

Algorithm 
Time 

Complexity 

Space 

Complexity 

Memory Usage 

(MB) 

CPU 

Utilization 

Parallelization 

Efficiency 

PSO O(N×D×T) O(N×D) 2-10 85-95% Excellent (95-98%) 

ABC O(2N×D×T) O(2N×D) 5-15 75-85% Good (80-90%) 

ACO O(N²×D×T) O(N×D²) 10-50 60-75% Moderate (60-75%) 

Hybrid PSO-

ABC 
O(3N×D×T) O(3N×D) 8-25 80-90% Good (85-92%) 

Hybrid PSO-

ACO 
O(N²×D×T) O(N×D²) 15-60 70-80% Moderate (65-80%) 

N = Population Size, D = Problem Dimension, T = Iterations 

 

Computational complexity analysis reveals fundamental trade-offs between algorithmic sophistication and 

resource efficiency, with significant implications for practical deployment across different hardware constraints. 

As shown in Table (4), PSO maintains the most favorable complexity profile with O(N×D×T) time complexity 

and minimal memory requirements (2-10 MB), achieving excellent CPU utilization (85-95%) and outstanding 

parallelization efficiency (95-98%). This makes PSO particularly suitable for resource-constrained environments 

and real-time applications. ABC’s doubled complexity O(2N×D×T) reflects its dual-phase search mechanism, 

resulting in moderate memory usage (5-15 MB) and good parallelization potential (80-90%). ACO exhibits the 

highest computational overhead with O(N²×D×T) complexity due to pheromone matrix operations, requiring 
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substantial memory allocation (10-50 MB) and showing limited parallelization efficiency (60-75%). Hybrid 

approaches necessarily increase computational requirements, with PSO-ABC consuming O(3N×D×T) complexity 

and 8-25 MB memory, while maintaining reasonable parallelization efficiency (85-92%). These complexity 

characteristics suggest that algorithm selection must carefully balance performance requirements against available 

computational resources, with PSO offering the best efficiency-performance ratio for most practical applications. 

 

Problem characteristic analysis provides a systematic framework for algorithm selection based on optimization 

landscape features, revealing clear algorithmic specializations and limitations. In table (5), PSO demonstrates 

exceptional suitability for continuous variable problems but requires significant modification for discrete 

optimization tasks, while maintaining excellent performance in low-dimensional spaces (<50 dimensions) but 

degrading rapidly in high-dimensional problems. ABC exhibits superior versatility, handling multimodal 

landscapes effectively while maintaining good performance across mixed-variable problems and showing 

particular strength in noisy function optimization due to its inherent randomization mechanisms. ACO's discrete 

optimization capabilities make it the preferred choice for combinatorial problems and constrained optimization 

scenarios, with good scalability for high-dimensional discrete spaces, though requiring adaptation for continuous 

variables. Dynamic optimization problems favor ABC's exploration capabilities, while real-time constraints 

strongly favor PSO's rapid convergence characteristics. Multi-objective optimization scenarios benefit from 

specialized variants (MOPSO, MOABC) rather than standard implementations. These findings indicate that 

successful algorithm deployment requires careful matching of algorithmic strengths to problem characteristics, 

with hybrid approaches offering potential solutions for problems exhibiting mixed characteristics. 

 

Table 5. Problem characteristics and algorithm suitability 

Problem characteristic PSO suitability 
ABC 

suitability 
ACO suitability Recommended approach 

Continuous Variables Excellent Good Poor* PSO or Hybrid PSO-ABC 

Discrete Variables Poor* Moderate Excellent ACO or Binary PSO 

Mixed Variables Moderate Good Good Hybrid PSO-ACO 

Low Dimensionality (<50) Excellent Excellent Good Any algorithm 

High Dimensionality (>200) Poor Moderate Good** ABC or Decomposition 

Multimodal Landscape Moderate Excellent Good ABC or Hybrid 

Noisy Functions Moderate Excellent Moderate ABC with larger population 

Expensive Evaluations Good Excellent Moderate ABC with surrogate models 

Real-time Constraints Excellent Moderate Poor PSO or Fast PSO variants 

Dynamic Optimization Good Excellent Moderate ABC or Adaptive PSO 

Constrained Problems Moderate Good Excellent ACO or Constraint handling 

Multi-objective Good Excellent Good MOPSO, MOABC, or NSGA-II 

*Requires modification/adaptation, **Depends on problem structure 

 

Table 6. Statistical performance comparison (benchmark functions) 

Function  

Type 
Algorithm 

Best  

Fitness 

Mean  

Fitness 

Std  

Deviation 

Success Rate 

(%) 

Convergence 

(Iter.) 

Unimodal 

PSO 1.2e-15 3.4e-12 2.1e-11 100 45 ± 8 

ABC 2.1e-12 1.8e-09 4.5e-09 97 78 ± 15 

ACO 1.5e-08 3.2e-06 1.2e-05 89 145 ± 25 

Multimodal 

PSO 2.1e-03 1.8e-02 3.4e-02 73 125 ± 35 

ABC 1.5e-05 2.3e-04 8.9e-04 91 156 ± 28 

ACO 3.4e-04 1.2e-03 2.8e-03 85 198 ± 42 

Noisy 

PSO 0.15 0.45 0.68 68 185 ± 55 

ABC 0.08 0.23 0.31 84 224 ± 38 

ACO 0.12 0.38 0.52 76 267 ± 48 

Constrained 

PSO 0.02 0.08 0.15 72 165 ± 45 

ABC 0.01 0.04 0.07 86 198 ± 32 

ACO 0.003 0.01 0.02 92 156 ± 28 

 

Statistical performance evaluation across standardized benchmark functions provides rigorous quantitative 

evidence of algorithmic capabilities and limitations under controlled conditions, as shown in Table (6). For 

unimodal functions, PSO achieves superior convergence with best fitness values reaching 1.2e-15 and 100% 

success rate within 45±8 iterations, demonstrating its effectiveness in exploitation-focused scenarios. ABC shows 

moderate performance on unimodal functions (best fitness 2.1e-12) but excels in multimodal environments, 

achieving 91% success rate with significantly better consistency (standard deviation 8.9e-04) compared to PSO's 
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3.4e-02. ACO demonstrates particular strength in constrained optimization, achieving the best performance (0.003 

best fitness, 92% success rate) despite slower convergence (156±28 iterations). Noise tolerance analysis reveals 

ABC's superiority with lowest fitness values (0.08) and highest success rate (84%) in noisy environments, while 

PSO's performance degrades significantly (0.15 best fitness, 68% success rate). These statistical results confirm 

that algorithmic selection should be based on problem characteristics, with PSO optimal for smooth, unimodal 

landscapes, ABC preferred for multimodal or noisy environments, and ACO superior for heavily constrained 

problems. 

 

Implementation complexity analysis reveals significant practical barriers that influence algorithmic adoption in 

industrial settings, extending beyond pure performance metrics to encompass development and maintenance 

considerations. In table (7), PSO demonstrates the lowest implementation barrier with simple velocity update 

equations, minimal parameter requirements, and excellent code maintainability, contributing to its widespread 

industrial adoption. The algorithm benefits from extensive library availability, comprehensive documentation, and 

large community support, reducing development time and training requirements. ABC presents moderate 

implementation complexity with its three-phase structure (employed, onlooker, scout bees) requiring more 

sophisticated coding but remaining manageable for most development teams.  

 

ACO exhibits the highest implementation complexity due to intricate pheromone management, complex 

probability calculations, and challenging debugging procedures, requiring substantial algorithmic expertise and 

longer development cycles. Integration difficulty follows similar patterns, with PSO easily incorporating into 

existing optimization frameworks while ACO demands significant architectural modifications. These practical 

considerations often override pure performance advantages, explaining PSO's dominance in industrial 

applications despite potential performance limitations. The analysis suggests that successful algorithm 

deployment must balance performance requirements against available development resources and organizational 

capabilities. 

 

Table 7. Implementation and practical considerations 

Consideration PSO ABC ACO Implementation Notes 

Implementation 

Complexity 
Low Moderate High 

PSO: Simple velocity updates; ACO: Complex 

pheromone management 

Parameter Tuning Effort 
Low-

Moderate 
Moderate High ACO requires extensive parameter optimization 

Code Maintainability Excellent Good Moderate PSO has fewer algorithmic components 

Library Availability Excellent Good Good Many open-source implementations available 

Integration Difficulty Low Moderate High PSO easily integrated into existing systems 

Debugging Complexity Low Moderate High ACO behavior harder to trace and debug 

Documentation Quality Excellent Good Moderate PSO most widely documented 

Community Support Excellent Good Good Large research and practitioner communities 

Industry Adoption High Moderate Moderate PSO most commonly used in industry 

Training Requirements Low Moderate High ACO requires deeper algorithmic understanding 

 

Strategic algorithm selection guidelines synthesize performance characteristics, implementation considerations, 

and application requirements into practical decision-making frameworks for engineering practitioners, as shown 

in table (8). For rapid prototyping scenarios, PSO emerges as the optimal choice due to its simple implementation, 

good default performance, and minimal tuning requirements, enabling quick feasibility studies and concept 

validation. Production systems benefit from ABC’s consistent performance and robustness, while hybrid PSO-

ABC approaches offer enhanced reliability for critical applications. Real-time optimization strongly favors PSO 

variants due to superior convergence speed, while high-reliability systems requiring consistent results across 

multiple runs should prioritize ABC or multi-run PSO strategies.  

 

Complex constraint handling applications naturally align with ACO’s capabilities, though constraint-handling 

PSO variants may offer computational advantages. Large-scale optimization problems exceeding 200 dimensions 

require careful consideration, with ABC showing better scalability characteristics than standard PSO, though 

decomposition approaches may prove necessary. Multi-objective scenarios demand specialized variants 

(MOABC, MOPSO) rather than single-objective algorithms, while dynamic environments favor ABC’s tracking 

capabilities or adaptive PSO implementations. These guidelines emphasize that optimal algorithm selection 

requires comprehensive consideration of problem characteristics, performance requirements, resource constraints, 

and organizational capabilities rather than relying solely on benchmark performance metrics. 
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Table 8. Recommended selection guidelines 

Application scenario Primary choice Alternative Justification 

Quick prototyping PSO ABC 
Fast implementation and good default 

performance 

Production systems ABC Hybrid PSO-ABC Robust and consistent performance 

Real-time optimization PSO Fast PSO variants Superior convergence speed 

High-reliability systems ABC Multi-run PSO Consistent results across runs 

Complex constraints ACO Constraint-handling PSO Natural constraint incorporation 

Large-scale problems ABC Decomposition approaches Better scalability characteristics 

Multi-objective MOABC MOPSO Balanced exploration-exploitation 

Dynamic environments ABC Adaptive PSO Superior tracking capabilities 

Limited computational 

budget 
PSO Surrogate-assisted ABC Fastest convergence per evaluation 

Unknown problem 

characteristics 
ABC Hybrid approaches 

Most robust general-purpose 

performance 

 

 

Challenges and Limitations of Swarm Intelligence in Engineering Applications 

 

While swarm intelligence (SI) algorithms have demonstrated considerable success across engineering domains, 

their deployment is not without limitations. These challenges are essential to address in practical implementations 

and future algorithmic developments. 

 

1. Premature Convergence 

▪ SI algorithms, especially standard PSO and ACO, often suffer from early convergence to local optima in 

complex, multimodal landscapes. This limits their exploration capacity, particularly in high-dimensional 

problems. 

▪ Suggested Mitigation: Use of diversity-preserving techniques (e.g., multi-swarm, adaptive inertia) and 

hybridization. 

2. Sensitivity to Parameter Settings 

▪ Performance is highly sensitive to algorithm-specific parameters (e.g., inertia weight in PSO, pheromone 

evaporation rate in ACO). 

▪ Risk: Poor tuning may result in suboptimal performance or failure to converge. 

▪ Solution: Adaptive or self-tuning mechanisms (Sissodia et al., 2025b). 

3. Scalability Limitations 

▪ As problem dimensionality increases (D > 200), PSO and ACO face memory and time complexity issues 

due to population-based or pheromone-tracking mechanisms. 

▪ ABC shows better scalability but still suffers from computational burden in high-precision contexts. 

4. Computational Overhead of Hybrids 

▪ Although hybrid algorithms often enhance solution quality, they impose increased complexity and 

development time. 

▪ This makes them less attractive for real-time or embedded system applications unless parallelized 

efficiently. 

5. Lack of Theoretical Guarantees 

▪ Most SI algorithms are heuristic by nature, with limited convergence proofs or stability analysis. This 

raise concerns in safety-critical domains (e.g., aerospace, medical devices). 

▪ Calls exist for more rigorous theoretical frameworks (Liu et al., 2024a). 

6. Real-World Integration Gaps 

▪ Bridging algorithmic research with industrial deployment remains a challenge due to lack of modular 

libraries, insufficient documentation, or domain-specific tuning guides. 

 

 

Future Directions and Conclusions 

 

Emerging trends in swarm intelligence research indicate continued evolution toward more sophisticated, adaptive, 

and application-specific algorithms(Phadke & Medrano, 2023). Integration with artificial intelligence techniques, 

particularly machine learning and deep learning approaches, represents a major direction for future development. 

These hybrid approaches promise enhanced performance in complex engineering optimization problems while 

providing intelligent adaptation capabilities. 
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Quantum-inspired swarm intelligence algorithms represent an emerging research frontier with potential for 

significant performance improvements (Priyadarshini, 2024). Quantum computing principles applied to swarm 

intelligence optimization may enable exploration of solution spaces that are intractable for classical algorithms. 

Early research indicates promising results for specific problem classes, suggesting potential future applications in 

complex engineering optimization scenarios. 

 

Real-time optimization capabilities continue to evolve, with advanced swarm intelligence implementations 

demonstrating improved performance in dynamic environments (Immaneni, 2021). Future developments in real-

time swarm optimization will likely focus on predictive adaptation strategies, efficient online learning 

mechanisms, and improved convergence acceleration techniques that enable effective performance in rapidly 

changing optimization landscapes. 

 

Research gaps requiring attention include theoretical convergence analysis for hybrid swarm algorithms, 

standardized performance evaluation frameworks for engineering applications, and improved techniques for 

handling high-dimensional optimization problems(Liu et al., 2024b). Theoretical foundations for swarm 

intelligence algorithms remain incomplete, particularly for hybrid approaches that combine multiple optimization 

techniques. 

 

Practical implications for engineers include increased availability of powerful optimization tools, improved 

solution quality for complex design problems, and enhanced capability for handling multi-objective optimization 

scenarios(Guo & Zhang, 2022). Engineering practice will likely benefit from continued development of user-

friendly implementation frameworks, standardized algorithm libraries, and application-specific optimization tools 

that leverage swarm intelligence techniques. 

 

The five-year review period from 2020 to 2025 demonstrates substantial advancement in swarm intelligence 

applications across diverse engineering domains. Performance improvements, algorithmic innovations, and 

expanding application areas indicate continued growth potential for these optimization techniques. Future 

engineering systems will likely incorporate swarm intelligence algorithms as standard components for addressing 

complex optimization challenges in autonomous systems, smart infrastructure, and sustainable technology 

development. 

 

The comprehensive analysis presented in this review demonstrates that swarm intelligence algorithms have 

matured into practical, effective optimization tools for modern engineering applications(Xu et al., 2023). 

Continued research and development efforts will likely further enhance their capabilities and expand their 

applicability to emerging engineering challenges. 
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