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Abstract: 6G wireless communication networks require low-latency, ultra-reliable error correction capabilities
that adapt to dynamic channel scenarios and block lengths. This study presents a new adaptive neural decoding
workflow for 5G-New Radio LDPC base graphs (BG1 and BG2). It combines a weighted Min-Sum (WMS)
algorithm with syndrome-aware learning that uses parity-check feedback to guide neural decoding in two key
ways: syndrome-based loss and syndrome-conditioned message updates. This approach overcomes the limitations
of traditional min-sum (MS) and belief propagation (BP) decoders. To improve message updates among iterations
based on real-time parity-check feedback, we first introduce trainable parameters for better training on the most
challenging error patterns; a unique data pipeline collects "uncorrected" frame samples at low SNR and generates
log-likelihood ratios (LLRs) under the Additive White Gaussian Noise (AWGN) channel and Rayleigh flat-fading
channel. The training scheme has two stages: (1) an end-to-end supervised stage focused on minimizing both soft-
BER and soft-FER loss across random noisy codewords, and (2) a boosting stage for learning residual corrections
using mean-squared error on uncorrected frames. Performance is evaluated across various SNR levels, lifting
factors, and code rates. Results show that BG1 outperforms BG2 in the AWGN channel by 1 dB and in the
Rayleigh flat-fading channel by 2 dB. To balance reliability and decoding complexity, early convergence is
achieved within 10 to 20 iterations. Additionally, lower rates and higher lifting factors produce sharper waterfalls
and error floors below 1077 and 1078 for AWGN and Rayleigh, respectively. The proposed framework
generalizes to different channel types and LDPC designs and offers a 0.3 dB waterfall gain compared to traditional
neural Min—Sum decoders. These results demonstrate adaptable, high-performance error correction suitable for
various wireless applications, highlighting the practicality of syndrome-aware WMS neural decoding for future
6G standards.

Keywords: Base Graph-LDPC codes optimization, 6G-Neural LDPC decoder, Weighted min-sum decoding,
Syndrome-aware learning, Uncorrected-frame boosting

Introduction

Advanced communication networks, such as 5G New Radio (NR) commonly utilize low-density parity-check
(LDPC) codes as the coding scheme for data channels due to their excellent reliability and effectiveness
(Richardson & Kudekar, 2018; TSGR, 2020) in achieving performance close to the Shannon limit (Chung et al.,
2001). LDPC codes employ iterative decoding (Fossorier, 2001) with multiple algorithms available. Sum standard
sum-product (SP) algorithm is also known as the belief-propagation (BP) algorithm. Due to its computational
complexity (Sun & Jiang, 2018), the BP technique achieves nearly optimal decoding performance. However, the
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min-sum (MS) decoding algorithm (Kschischang et al, 2002), despite being slightly less efficient, is a suitable
choice due to its significantly lower complexity.

The transition toward 6G introduces additional issues, including 1. Dynamic Channel Conditions: Enhanced
mobility and various applications require adaptable and resilient error correction. 2. Shorter Block Lengths: In
ultra-low-latency applications, LDPC codes must perform efficiently with shortened codewords. 3. Scalability:
The LDPC codes should effectively adapt to diverse block lengths, coding rates, and applications (Rowshan et
al., 2024). To overcome this issue, various algorithms have been employed, including the offset min-sum and
normalized min-sum (Chen et al., 2005; Wu et al., 2010), to optimize the MS decoding algorithm. The goal is to
achieve near-perfect performance with the BP algorithm while minimizing complexity. Additionally, they are
typically optimized for fixed channels like Additive White Gaussian Noise (AWGN), which reduces robustness
in fading scenarios, such as Rayleigh fading. To ensure reliable communication in real-world applications, it is
necessary to develop intelligent and adaptive decoding algorithms that can generalize across various uncertain
channel conditions. Traditional MS decoding algorithms, due to their computational performance, exhibit
considerable sub-optimality because they utilize uniform and constant weights across all decoding iterations. This
inflexible structure is unsuitable for dynamic channel scenarios, causing degraded decoding effectiveness,
particularly among non-Gaussian noise or channel distortions (Nachmani et al., 2017).

Recent developments in neural decoding algorithms have focused on combining learnable parameters during the
decoding procedure. However, they tend not to leverage key syndrome information. This data indicates the direct
mathematical feedback given by the LDPC parity-check equations. Therefore, conventional neural decoders do
not automatically modify their message-passing updates across decoding iterations and edges in response to real-
time signs of the decoding process's success or failure. In Dai et al. (2021) the researchers developed a neural
Min-Sum (NMS) decoder strategy that combines iteration-by-iteration training and parameter sharing to address
vanishing gradient problems and lower complexity during training.. The authors in Kwak et al. (2024) introduced
boosted NMS decoders using a novel training methodology that utilizes two stages of the neural decoding process,
where the second decoder is trained specifically to correct errors when the initial decoder fails to correct. A hybrid
framework that uses standard neural MS variants combined with ordered statistics decoding OSD, developed by
the authors in (Li & Yu, n.d.) through adaptive procedures, including dynamic error pattern grouping and iteration
diversity, aims to enhance decoding beyond the error floor. Due to the lack of systematic training procedures for
NMS decoding, as well as performance and training efficiency issues, the authors in Na et al. (2025) suggested
optimal training methodologies integrated with dataset creation. These methodologies improve decoding
performance beyond traditional techniques, particularly in the error floor region, while ensuring minimal
computational complexity.

The primary goal of the proposed system is to optimize decoding performance by developing an adaptive neural

decoder structure based on a weighted Min-Sum (WMS) framework. The optimization and contributions of this

study are summarized as follows:

1. Develop a decoding framework for NMS with trainable parameters to improve message updating between
the variable and check nodes, enabling adaptive message passing based on communication conditions.

2. Integrate syndrome-aware learning to boost decoder performance and early convergence by enabling it to
switch weight updates according to real-time parity-check feedback dynamically.

3. The custom database workflow generates log-likelihood ratio (LLR) samples and simulates LDPC code
performance across multiple channel models, collecting uncorrected real-time samples to highlight the
learning framework in challenging decoding scenarios.

The proposed framework aims to enhance training efficiency, significantly improve decoding performance, and
increase model robustness compared to random uniform sampling, while generalizing across multiple channel
types and providing a scalable solution for future wireless standards, such as 6G and beyond. This paper compares
the performance of base graph (BG) LDPC code by evaluating BG1 and BG2, code lengths and code rates impacts
on BG2 across AWGN, and Rayleigh fading channels, as well as the transmitting modulation technique of
quadratic phase shift keying (QPSK).

LDPC Base Graph Construction

The [N, K] LDPC code involves N bits for the code length, K bits for the information length, and M = N — K
parity bits. The sparse parity-check matrix H is commonly used to represent the LDPC code, which has dimensions
M x N and a code rate of R = K/N. The codeword c is represented by a binary vector of length N. The set of
all codewords indicates the code. The code satisfies the condition ¢ - HT = 0. As demonstrated in the Tanner
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(1981) graph presents a complete illustration of LDPC codes that helps the understanding of decoding methods.
The Tanner graph is a bipartite graph representation that defines two sets of nodes: N variable nodes (VN) of a
set {vo, V4, ., Un_1}, and M check nodes (CN) of a set {cg,cy,...,cy_1}. An edge exists between the
corresponding VN v; and CN ¢; only if H; ; = 1. The 5G-NR system utilizes two distinct base matrices, BG1 and
BG2 (Petrovic¢ et al., 2021). Without these blocks, we cannot construct the LDPC code or verify its error-correcting
capabilities. The standards (Kumar et al., 2023) specify fixed sizes for both base graphs: BG1 measures 46x68,
and BG2 measures 42x52. Table 1 details the criteria for BG1 and BG2 according to the 3GPP TS 38.212 standard
(Nguyen et al., 2019).

Table 1. The 5G-NR LDPC BG parameters

Parameter BG 1 BG?2
Base Graph dimension 46 X 68 42 x 52
Code rate 1/3 < R< 8/9 1/5 < R < 2/3
Systematic bits 22 10
columns
No. of non-zero 316 197
elements
Information lengths 500 < K < 8448 40 < K < 2560
The sub-Matrices sizes A: 4 X 22;E:4 X 4;0:4 x 42 A: 4 X 10; E: 4 X 4; 0: 4 x 38
B: 42 x 22; C: 42 B: 38 x 10; C: 38 x 4; I: 38 x 38

X 4;1:42 X 42

The matrix fixed block structure is divided into columns consisting of three parts: information columns, core
parity columns, and extension parity columns. Rows are subdivided into core check and extension check, as shown
in Fig. 1. The matrix structure comprises submatrices A and B, which together form the kernel (the information
part), while the submatrices E, O, C, and I are referred to as (extensions) for parity bit calculation.

Information ~ Core parity Extension parity
- columns columns columns
g 00
2@ 0 0
= 2
3 é A E o 0 O
3 0 :
O 1
o
1

®
g =
£ B C I
= w
2
o2

ke

1
1
Code length N

Figure 1. Base graph structure

LDPC codes consist of multiple expansion factors, all of which are determined by the index i; s, which organizes
the expansions. Equation (1) establishes the highest value of 384 for the expansion factor Z.. Each element in the
base graph features a circularly shifted value ranging between -1 and 383. Two variables determine the expansion,
factor a and factor J,, as described by the equation (1) and Table 2 for Z, corresponding to 3GPP TS38.212
standard (3GPP, 2020).

Ze=ax?2/ D
Where {a:2,3,57911,13,15} and the value of {j:0,1,2,---,J,}, based on the set index
(i5:0,1,2,3,4,5,6,7). The H matrix is a crucial component of LDPC codes, used for both encoding and

decoding. To construct H, we replace every entry of the BG by a square matrix Z, X Z. . Generating the H matrix
for LDPC codes is a meticulous process that must strike a balance between the requirements for sparsity, error-
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correcting capability, and computational efficiency. The process of transforming BG into an H matrix suitable for
LDPC codes requires three main steps as follows:

* Step 1: Replace (-1) entries in BG with a zero matrix of size Z, X Z.

* Step 2: Replace (0) entries in BG with an identity matrix I,.

Table 2. The LDPC- Z sets
Setindex (i;g)  Set of Lifting Sizes (Z. )

Zc=2x2), j=01,23456,7 - {2, 4, 8, 16, 32, 64, 128, 256}
Zc=3x%x2), j=0123456,7 > {3, 6, 12, 24, 48, 96, 192, 384}
Zc=5x2), j=0,1,234,5,6 - {5, 10, 20, 40, 80, 160, 320}
Zc=7x2), j=012345- {7, 14, 28, 56, 112, 224}
Zc=9x2/, j=012345- {9, 18, 36, 72, 144, 288}
Zc=11x2/, j=0,1,2,3,4,5 - {11, 22, 44, 88, 176, 352}

Zc=13x2/, j=0,1,2,3,4 - {13, 26, 52, 104, 208}
Zc.=15x%x2/, j=0,1,2,3,4 - {15, 30, 60, 120, 240}

NN R WD~ O

* Step 3: Replace (i) entries in BG with an identity matrix I,,but with a right shift performed i times, where i
ranges from 0 to Z, — 1.

The suggested parameters for BG1 and BG2 in this research are i;¢ = 0 and Z, = 8; meaning that the range of
entries extends from -1 to 7. Every element in the BGs is converted into an 8 X 8 identity matrix that forms H.
Table 3 outlines the specifications and corresponding values of BG 1 and BG 2, while Fig. 2 presents the
configuration of the structured BG1.

Table 3.Parameters and related values

Parameter BG 1 BG2

Block length (1) 68 52

Information bits count (Kp,) 22 10

Block rows 46 42

Edges 316 197

Columns weight (W;,) 1 to 30 37t041

ROWS Welght (WC) 3 to 19 47 to 51

Code rates 0.32 0.19

368X544 336x416
H field [F508% [F336%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...... 67 68

1 73 15 103 49 -1 240 39 -1 -1 15 162 215 164 133 -1 298 110 -1 ... -1 -1
2 1303 -1 294 27 261 161 -1 133 4 80 -1 129 300 -1 76 266 72 83 ... -1 -1
3 68 7 80 -1 280 38 227 202 200 71 106 -1 -1 295 283 301 -1 184 ... -1 -1
4 1220 208 -1 30 197 -1 61 175 79 -1 281 303 253 164 353 -1 4 28 ... -1 -1
5 1233 205 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 B -1 -1
6 83 292 -1 50 -1 -1 -1 -1 -1 -1 -1 -1 318 -1 -1 1201 -1 ... -1 -1
7 128 -1 -1 -1 -1 -1 21 -1 -1 1 293 13 -1 232 -1 1 -1 302 -1 -1
8 12 88 -1 -1 207 -1 -1 50 25 1 -1 -1 -1 -1 76 1 -1 -1 -1 -1
45 1234 -1 -1 -1 -1 -1 -1 227 -1 259 -1 -1 -1 -1 -1 -1 -1 -1 0 -1
46 -1 101 -1 -1 -1 -1 228 -1 -1 -1 126 -1 -1 -1 -1 -1 -1 -l -1 0

Figure 2. Base graph 1 matrix

Neural Min-Sum Decoding for Base Graph LDPC Codes

The min-sum (MS) decoding algorithm serves as an iterative decoding algorithm in which data are exchanged
between variable nodes and check nodes with each iteration, having the message update criteria for check nodes
close to the basic minimum operation (Na et al., 2025). To boost the algorithm's performance, the weighted MS
(WMS) decoder technique (Kwak et al., 2024) was proposed, which incorporates an a (normalization factor) into
the CN messages. The NMS decoding technique (Dai et al., 2021) intends to improve the decoding performance
by utilizing o as a learnable parameter and incorporating various weighting factors for iteration t. The WMS is an
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iterative decoding procedure that passes data in the form of log-likelihood ratios (LLRs) via the edges of the
Tanner graph. The LLR of the v, bit in a transmitted binary codeword bit x € {0,1} is determined by
comparing the noisy received signal vector y to x, given by:

Pr()’lev =0)

L,= log—2"2——~
v 9 bl = 1)

()

log(-) stands for “logarithm base 2”, and Pr(receive y,|sent x,) is the channel’s transition probability (or
density) from the transmitted bits x to the received vector y illustrates the whole behavior of the channel, including
bit flips, noise, and fading. At iteration t in the iterative decoding process, the message that passes from
(VN v ->CNc)is:

t (-1
Wo=L,+ Yy 57 3)
c'en)/c

Where V' (v) is the sets of neighboring nodes VN v, ¢’ indicates each of the other CN's linked to the same VN v,

unless this CN c is where message updates are computed. The message passes (CN ¢ - VN v), i(ct)_,v:

®
~(t) -1 Lv’—>c
L;Z,, = 2tanh | | tanh — (4)
v'en(c)/v

NNV (c) is neighboring node set of CN ¢, and v’ indicates all of the other VN's linked to the same CN v,except VN v.
The initial values are LSJO_))C = L.y ,and Z(Col,v=0, where L.y, is the channel LLR. At first iteration (f(ct,__li =0) in

3), (LS,O_),C = L,) = L.,. After t iterations of message-passing decoding, the soft estimation s, “best guess” of a
posteriori LLR for x bits in (2) being zero, compared to one, as:

~(t)
s, =L, + z V. 5)
c'enN(v)
The eq. (5) represents the combination of initial channel information L, and extrinsic information from all

®
7

c' —v’

neighboring parity checks L
The decision rule provided in (6) that converts the soft LLR estimate s,, into a binary bit estimate X,, ,as:

Here’s how the sign function of soft estimation s, (sgn(s,)) operates:

+1, s, >0
sgn(s,) =4-1, 5,<0
0, s, =0

The iterative decoding methodology explained previously is known as the belief-propagation (BP) algorithm or
the sum-product (SP) algorithm. To decrease computing complexity in equation (4), caused by hyperbolic tangent
functions and numerous multiplications, the MS approach is employed to derive equation (4) as:

) _ (3] . ®
Lewy = 1_[ sgn(L",_’c) % v’e%l(lci)/v L”’_"" ™
v'en(c)/v

In contrast to the SP approach, the MS approximation incurs a non-negligible efficiency loss. Other advanced MS
algorithms were released in (Dai et al., 2021). Thus, in this study, the neural MN (NMS) (Kwak et al., 2024) is
adopted, incorporating the channel weight WC(,?, into equation (3) and the check node weight W,SQ,, () for iteration

t into equation (7) . So, the (VN v — CN c) update sublayer is written as:
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1 =wlo+ Y I8 ®)

c'—v
c'eN(w)/c

And (CN ¢ — VN v) update sublayer as:

19, =a®x 1_[ sgn(L?. )

v'>c
v'eN(c)/v

®)
1ile]\r(c)/_';|Lv’—)c| (9)

Finally, the v;;, element of the output LLR vector LY is calculated at the last iteration T given by:

L =L+ Z IV (10)
c'eN ()

The primary objective of this framework is to optimize the weights of the NMS decoder to improve the
performance of the BG-LDPC code.

Proposed BG-LDPC Code Scheme

This section outlines the proposed system model design methodology step-by-step, as illustrated in Fig. 3. It also
describes the neural network structure for training weights of the NMS decoder.

The System Model

The overall structure of the proposed adaptive WNMS decoder’s end-to-end process description is illustrated by
the flowchart in Fig. 3. The initial step is collecting datasets. This study trains its neural network using a dataset
of LDPC BGs and their associated BER. The details for these datasets derive from the 3GPP TS 38.212 standards.
After the data collection step, the parameters Z. , BG (BG1 or BG2), R, and i; are initialized. The BG has been
loaded and converted to a flat form (sequence vectors §) to construct the H € {0,1}"*N matrix after these
parameters are parsed and fed into this mapping function. Circular right shifts are then applied based on 14.

Based on shift values Z; to encode the message using a lower triangular LDPC encoder in GF (2) to obtain a
systematic form of H, = [I: P] and concatenate the message and parity bits to form the codeword( C =
My, ..., Mg, Py, -, P(n—k))- The specified channels influence the transmitted QPSK signals (AWGN, and Rayleigh
flat fading channel). The NMS algorithm is implemented through channel weights to enhance the LDPC code-
based BG matrix. The decision is made by (6) is to obtain the optimal estimation X and tested by applying the
syndrome rule H - 7 = 0 as the last step.

Decoder Training Methodology

The training procedure implemented in our work is based on a supervised learning technique called gradient-
based optimization. Specifically, we are applying Adam optimization (Kingma & Ba, 2015) to update the
learnable parameters, which include the weight and bias tensors of a neural network-based LDPC decoder. Here's
a detailed description of the neural network structure illustrated in Fig. 4. The neural network's input layer is a
vector of channel LLR {L§", LS, ..., LS*} having the same length as the number of VNs v in the Tanner graph,
and it produces the output layer LLR vector {L9, LS, ..., L%}, also containing the same number of neurons. All
hidden layers share the same size, which is equal to the number of edges in the Tanner graph . Two hidden layers
(sublayers) are allocated for each decoding iteration t, with each containing one neuron corresponding to each
edge in the Tanner graph. The variable node update (VN v — CN c¢) messages in (8) are produced by the odd
hidden layers, while the even layers transmit the check node update (CN ¢ — VN v) messages in (9). The input
layer connected to all odd hidden layers represents the incorporation of the channel LLR in (8). The weight and
bias tensors are updated using the Adam optimizer, a variant of gradient descent,are: the channel weight w® the

ch >
check node weight {a} I_,,the VN edge weights {Wl-"j" along with the optional biases by, b, .
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Figure 3.Diagram of the adaptive neural decoding procedures
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Figure 4.The network diagram of the proposed NMS decoder

Collectively, these parameters define the forward pass:

e The (VN v) update is:

LD = wit x| wPL) + A Viev, jeEN@) 11)
c'eNw)/c
e The (CN c) update is:
IV =a®x sgn(L? ) |x min L9 |  vte{12,.,T} (12)
ey v -c v'eN(c)/v' V 7€ e
v'eN(c)/v
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To train all learnable parameter weights WC(,?, w;i", and a end-to-end while minimizing a syndrome-aware loss

over a dataset that is randomly generated from synthetic noisy codewords, we feed a collection of samples into
the neural network. After preparing the samples, generate noisy frame outlines as follows:

1- For each SNR value ¥ ,draw a batch of B random information bits x € {0,1}K .
2-  Encode via the H matrix and modulate (e.g., QPSK).
3- Pass through the channel (AWGN, and Rayleigh fading channel) to obtain received vector Y.

For training, we generate a random received vector y of length N, along with its corresponding channel LLR
vector {LS", LS", ..., LS"}. After computing the channel LLRs in (2), the posteriori LLR (after T iterations) is:

L5 = wehLh + Z L% (13)

c'—v
c'en ()

Consequently, we used loss functions in deep learning-based decoders, including the soft BER (Lian et al.,
2019)and FER (Xiao et al., 2021) loss functions.

e The soft BER:
N

1
Lo =5 ) o(=18)  (14)

v=1

Where the sigmoid function o(x) = (1 + e *) ! and e = 2.71828.
e For FER loss function

B
1 1
Logw =5 ) 5|1 = sgn(minie)|  (15)
B b_12 J

b is the number of frames.
The behavior of the sgn(+) function:

e  The forward propagation is:

2
sgn (mjn L?,) =— 1 (16)
j —sgn(mjn L%)
1+e J
e  The Gradient backpropagation according to the Adam optimizer is:
- Updating weights:
® ®
Whnew <~ Woig — @ ow® 17)
% refers to the gradient of the loss function (Lggr, Lrgr) With respect to the weight.

- updating biases:
b(t)

new

@®) GL
— bOld - aab(t) (18)

In addition, the BER could vary significantly with a varying number of iterations throughout the training process,
so the SNR must be allocated to different levels during training. Additionally, it is essential to note that both the
trained weights and biases are shared across all lifted versions of the same base graph and distributed across every
possible lifted code generated by the same base code. Algorithm 1 summarizes the suggested training techniques
for the NMS decoder.

Algorithm 1: Training The Neural LDPC Decoder: End-to-End Execution Logic
Inputs:

H € {0, 1}"*VN: parity-check matrix

L [1..N]: input LLRs: L, = log(Pr(y,|x, = 0)/Pr(y,|x, = 1))

T: max number of iterations (hidden layers)

W channel scaling weight (scalar)
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wy': VN-edge weights for each edge i — j
a[1..T]: learned CN-scaling factors per iteration
Output: X [1..N] : estimated codeword (0/1) or declare failure
step 1. Initialize all CN— VN messages to zero
for each check node j and each neighbor i € M(j):
Mg, [j—-1i] <0
step 2. Iterative Message Passing
for t from 1 to T do
# 2.1 VN Update Sublayer: compute variable-to-check messages
for each variable node i and each neighbor j € N(i) do
sum_in < 0
foreach k € N(i) \ {j} do
sum_in < sum_in + M [k - i]
end for
# weighted sum of channel LLR and incoming CN messages
M, [i - j] « wii' * (wep * LE(,? + sum_in)
end for
# 2.2 CN Update Sublayer: compute check-to-variable messages
for each check node j and each neighbor i € M(j) do
# product of signs
Signprud <1
foreachm € M(j) \ {i} do
Signprud < Signprod * Sign( M—Un[m _>]])
end for
# minimum magnitude
min,, < +oo
foreachm € M(j) \ {i} do
if abs(M,,,[m - j]) < min,, then
min_val < abs(M,,[m - j])
end if
end for
# learned CN- scaling factors per iteration — min — sum update
Mcn[i - i] < a[t] * Signprod * MiNyg
end for
end for
step 3. A-Posteriori LLR Computation
for each variable node i do
Lapp [l] < Wep * LE(})[) [l]
foreach j € N(i) do
Lapp[i] < Lapp[i] + Me[j - i
end for
end for
end for
Feed y into the NMS decoder corresponding
to the base code Cj after i — th iteration for the training
values of SNR and obtain output s,,;
Compute loss function based on (14), (15);
Update a®using gradient descent algorithm;
Step4. Decision & Syndrome Check
for i from 1 to N do
X[i] « (1 — sign(s,))/2  #maps positive LLR — 0, negative > 1
end for
ifH - X7 == 0 then
return X # decoding successful
else
return ¥ # or declare decoding failure
end if
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Boosting Learning with Uncorrected Vectors

Traditional end-to-end training strategies may perform poorly when noisy frames reach the correctable thresholds.
We improve the decoding process by reutilizing the incorrect frames. The decoding process consists of two main
stages: the base stage covers iteration{0,1, ..., T;} where the VN v update multiplies by the learnable w;}", and the
post stage covers iteration {T;, T; + 1,...,T} , applying MS corrections using a. The post-decoder, built on
boosting-learning theory, aims to mitigate the base-decoder's faults by learning from its errors. The decoding
process is theoretically divided into two stages, but in practice, it performs as one decoder using learning weights

using & (base) and w;;" (boosting). There are four main steps in our boosting training, as follows:

Step 1. Collect uncorrected samples: Run the pretrained NMS decoder on a large test set of noisy codewords at

low SNR, and collect frames where decoding fails (non-zero syndrome). Save their intermediate a posteriori LLR
vectors for each frame, which serve as the input LLRs LEO) and uncorrected vectors (base-decoder output) L;Trz.
Step 2: Secondary training set: Residual target computation, in which we define the “ideal” (noiseless) reference

LLRs vector as:

L; = log M (no channel noise) (19)
l Pr(yilx; = 1)
The residual learning corrections as:
AL=L—-LT  eRrV (20)

Where R is d-dimensional input space of codeword N.

Step 3. Boosting network stage: Repeat the same message-passing structure (NMS framework) with the learning

rate and while feeding ng;z and the original L°as (boost) network fg, whose goal is to predict the output AL from

the uncorrected frames ng and optionally L°.

e  Boost network prediction:
AL = feboost (LSZB' LO) € ]RN
fo(-) represents the forward function of the NMS-LDPC decoder, where ® encompasses all the learnable
parameters: {Wch ER, {W}}" es’ {a(t)}:_l} .This function serves as a mathematical mapping from input to
i,j)e =
output, taking noisy observations, processing all VN v and CN c sublayers (with their per-edge and per-iteration

weights), and producing updated beliefs.

e Boosting loss: Train fg, . by minimizing the mean squared error (MSE) over a batch of size B for each
of the b uncorrected frames, as (Cestari et al., 2024):

B B N
1 _ 1 -
Lanose =5y ) I0LD = BL O =50 > ) (a1 ~ AL @Y
b=1 b=11i=1

Step 4. Corrected LLR and the decision: After training, there are two stages of inference (base decoder and boost
correction) to correct each uncorrected output:

e Base decoder: L) = fopase (LY
e  Boost correction: AL = f@boost(Lg,f, LO); L(c?rr = Lg;q) +AL

This two-stage technique effectively eliminates "stuck" errors, resulting in an additional 0.1— 0.2 dB enhancement
in waterfall performance. To map that belief into the final hard decision (0/1) estimate X:

)
.. A~ 1-sgn(L
e Hard decision: x; = %
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This concludes the mathematical explanation of the boost-learning process by Syndrome Check:

H-2T=0 (decoded successfully)

Simulation Results
Proposed Training Scheme

For the BG-LDPC codes BG1 and BG2, with i;¢ = 0 and Z. = 8, we have selected decoding for evaluation
purposes using the adaptive WMS-NMS decoder in an end-to-end training process. We employ a supervised,
gradient-based approach that involves the message update rules in (11) and (12), which jointly optimize all
learnable parameters (channel scaling a, WC(,?, and w;"). The weights update method is iteration-by-iteration. The

general workflow is shown in Algorithm 1 and Fig. 4.

Performance Comparison

We evaluate the proposed adaptive neural decoder (base + base-post) under AWGN and Rayleigh channel
scenarios, BG configurations, lifting factors, and maximum number of decoding iterations. We collected 30000
vectors and 10000 for training, with 5000 for testing and 5000 for validation. The maximum number of iterations
was also set to 20 for all codes. At each SNR point, we collect at least 100 frame errors to measure the FER
performance. The scenario of transmitting coded QPSK symbols under varying channel conditions is assumed.

BG1 vs. BG2: AWGN channel

The BER and FER for BG1 and BG2 over an AWGN channel were compared using different values of SNR
(2 - 5) dB, as illustrated in Fig.5. In the waterfall region, BG1 is better than BG2 by about 1 dB, with BG1
achieving a BER of approximately 1.33 X 1077 at 4 dB, while BG2 requires 5 dB to reach a comparable BER of
approximately 1.26 X 1077, Additionally, regarding the error floor, both graphs indicate negligible error floors
down to BER ~ 1077 and FER =~ 107, demonstrating the effectiveness of the two-stage neural boosting decoder
in pushing error rates into the ultra-reliable scheme(< 1077).

a - BG1 Y - BG1
= ~e- 0G2 Sao -®- BG2
 Fme b

Se ‘e “e

' ' " ' ' " T T - - v
2.0 25 3.0 a0 as 50 2.0 2.5 3.0 a.0 a5 5.0

s 35
SNR (dB) SNR (dB)

Figure 5.Performance of BG-LDPC over AWGN channel for BER and FER

BGI1 vs. BG2: Rayleigh Flat-Fading Channel

Under Rayleigh fading, Fig. 6 shows both codes start with especially high error rates at 2 dB, indicating significant
deep-fade effects. However, BG1's structure utilizes diversity more effectively when the SNR exceeds
approximately 3 dB, leading to a much stronger waterfall effect. BG1 consistently achieves lower BER and FER
across all SNRs, demonstrating more reliable frame decoding. BG1 outperforms BG2 with an approximate 2 dB
improvement in BER. Additionally, BG1 enhances frame reliability compared to BG2. Below 5 dB, BGI
maintains noteworthy performance in its error floor, which decreases significantly for both BER and FER,
indicating that BG1 offers better resistance to strong fades and a sharper descent approach into the ultra-reliable
system under Rayleigh fading.
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Investigating the Impact of Code Rate

We examine the effect of code rate on code performance, as illustrated in Fig. 7, which shows the (a) BER and
(b) FER curves of BG2 for three LDPC codes (k = 10,Z, = 8) withrates R=0.19, 0.5, and 0.75 for the AWGN
channel. The LDPC codes and their rates over the Rayleigh fading channel are shown in Fig. 8.

. ~®- BG1 Pl ~e- BGL
s ~®- BO2 *eSaal ~e- BO2

a 10

o
SNR (dB)

Figure 6. Performance of BG-LDPC over Rayleigh flat-fading channel for BER and FER

6
SNR (dB)

" -®- R=0.19 o= -®- R=0.19
e - -®- R=0.5 o -~ R=0.5
o\\ . e -@- R=0.75 . S —— -®- R=0.75

3 a s 6 7 2 3 4 s 6 7
SNR (dB) SNR (dB)

Figure 7. Comparison of code rates for AWGN channel for BER and FER

Error correction is improved by more redundancy (lower R), meaning the error rate curve shifts to the right for
higher SNR. For the highest rate value (BG2, AWGN at R=0.75), we achieve BER = 3.03e-05 and FER = 7.58e-
04 at 7 dB, while (BG2, Rayleigh) requires SNR = 10 to reach BER = 4.87¢-04 and FER = 2.20e-02. The R=0.19
code (416, 80) outperforms R=0.5 (160, 80) by up to 1.1dB and R=0.75 (104, 80) by up to 3.34 dB in the waterfall
at BER= 10~* for AWGN channel.

P -e- R=0.19 100 o -e- R=0.19
~~~~~~ -®- R=0.5 ST -@- R=0.5
-e- R=0.75 B~ -@- R=0.75

BER
/

/
FER

/
oo

2 3 4 8 9 10 2 3 K 8 9 10

6 6
SNR (dB) SNR (dB)

Figure 8. Comparison of code rates for Rayleigh fading channel for BER and FER

Block Length Effect

We are increasing the block length N by varying the lifting factor Z, according to Table 2 for a fixed BG2 (R =
0.19,i,5 =0,k = 10) in Fig. 9. The values were chosen at index iis=0
(Z¢ = 2,4,8,16,32), which produce (N = 104,208,416,832,1664), respectively. As Z, grows, performance
improves significantly as N increases and cycle distributions become better. For BG2, BER falls from
394 x107*(Z, =2) to 1.50x 1078 (Z, = 32), while FER decreases from 2.08 X 1073 (Z, =2) to
8.00 X 1077 (Z, =32) at SNR=5 dB under the AWGN channel. For Rayleigh Flat-Fading channel
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performance the selected values were (Z, = 2,4,8,16), yielding (N = 104,208,416,832), at the same index i; ¢ =
0, as shown in Fig. 10.
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Figure 9. Comparison of lifting factor for AWGN channel for BER and FER
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Figure 10. Comparison of lifting factor for Rayleigh fading channel for BER and FER

Channel-Scaling Coefficients

The impact of a on LDPC code performance is illustrated in Fig. with selected values (0.5, 0.75, 0.8, 0.9, and 1)
under BG2, AWGN with R =0.19,, Z. = 8. A higher value of the scalar CN weight a accelerates convergence
and produces reduced error rates, BER/FER, at low and moderate SNRs. The optimal performance occurs at
a = 1, achieving BER=5.19¢-07 and FER1.23e-05 at SNR=4.5 dB. Beyond approximately 3.5 dB, all
configurations essentially reach the same error floor, so tuning a is most helpful when the channel is relatively
noisy.
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Figure 11. Comparison of check node for AWGN channel for BER and FER

Selection Criteria and Computational Overhead
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Selection of uncorrected frames for which the syndrome check not equal to zero,as:

S=H -XT%#0

After maximum number of decoding iterations T=20 at SNR < 2 dB is collected as “hard” samples for boosting.
Fig. 12 displays the distribution of uncorrected frames over iterations. The number of uncorrected frames dropped
from 5000 to 289 during the base decoder stage. At Base + Post, it was reduced to 2 frames, resulting in an
improvement of 99%. The computational cost on an NVIDIA RTX 3090 GPU, the boosting stage adds
approximately 15 % to the end-to-end training time

Base decoder (lterations 1-20) Base + Post decoder (lterations 21-40)

5000 300
@ —e— Base decoder "
£ £ 250
£ 4000 £
g 8 200t
(¥} (¥}
€ 3000 o
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e 2000 < 100}
3 3
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=] =
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25 50 715 100 125 150 175 200 225 250 275 300 325 350 375 400
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Figure 12. Distribution of uncorrected frames over iterations

Decoder Comparison

To explain the effectiveness of the proposed hybrid learning methodology, we compare decoding performance,
BER, and FER using the AWGN channel for four cases: the MS, WMS, NMS Base decoder, and NMS Base +
Post decoder, as shown in Fig. 13. The WMS decoder uses w(int-cn)=1 and w(int-ch)=1. While the WMS decoder
exhibits better waterfall performance than the baseline MS decoder by 0.4 dB at 0.00001 BER, it still shows a
significant error floor. The NMS Base decoder shows excellent performance in the waterfall region, similar to the
performance curve of the WMS decoder, with a BER 0f 4.33e-06 and FER of 1.00e-04 at 4.5 dB. To improve both
the waterfall region and error floor performance, the NMS Base + Post decoder, at SNR = 5 dB, achieves a BER
of 1.42e-07 and FER of 3.18e-06, demonstrating superior performance with a 0.8 dB gain compared to the MS
decoder.
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Figure 13. Comparison of decoder algorithm performance for BER and FER

Conclusion

In this study, the performance of the LDPC base-graph is improved in this work to meet to the requirements for
6G applications. We introduce a flexible and integrated two-stage adaptive neural decoding technique that
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incorporates a weighted Min-Sum (WMS) algorithm and syndrome-aware learning, utilizing parity-check
feedback in real-time. In the first step, the Base decoder learns parameters including channel-scaling coefficients
a end-to-end, per-iteration check-node weightswc(,? , and, and per-edge variable-node parameters w;;", to jointly
minimize loss functions, specifically a soft BER/FER. The second step, Base+Post, follows the same workflow
and retrains the decoder using uncorrected frames to fine-tune residual correction weights, leading to a 0.83 dB
waterfall improvement compared to traditional MS decoding at a 0.00001 BER value. The decoder optimizes its
message-passing parameters based on error patterns and channel conditions. Various code rates (0.19 to 0.75) and
lifting factors (Z = 2 to 32) were tested with different SNR values at a maximum of 20 iterations using QPSK
schemes, along with comprehensive simulations that extend across AWGN and Rayleigh channels, demonstrating
that BG1 outperforms BG2 in waterfalls and error floors. The adaptive WMS-NMS decoder offers an excellent
solution for highly reliable, low-latency 6G scenarios, achieving BP-level accuracy with flexible channel
adaptation and limited complexity.

Recommendations

According to the findings of our neural MS, this study offers the following recommendations:

1. Adaptation of dynamic scaling parameters: Adopt per-iteration learnable parameter check-node scaling
factors (o) instead of a fixed value, while ensuring parameter sharing across iterations to reduce model
complexity for the neural network.

2. Integration of hardware and real-time analysis: Evaluate real-time throughput, delay, and power usage
by prototyping the proposed WMS decoder on FPGA or ASIC configurations to identify trade-offs
between hardware complexity (latency, area, power) and decoding accuracy (error performance).

3. Modulation systems and models for wider networks: To assess efficiency in more challenging and
practical wireless scenarios, examine the decoder's adaptability across higher-order modulations (16-
QAM, 64-QAM) and various fading patterns (such as Nakagami-m and Rician).
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