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Abstract: 6G wireless communication networks require low-latency, ultra-reliable error correction capabilities 

that adapt to dynamic channel scenarios and block lengths. This study presents a new adaptive neural decoding 

workflow for 5G-New Radio LDPC base graphs (BG1 and BG2). It combines a weighted Min-Sum (WMS) 

algorithm with syndrome-aware learning that uses parity-check feedback to guide neural decoding in two key 

ways: syndrome-based loss and syndrome-conditioned message updates. This approach overcomes the limitations 

of traditional min-sum (MS) and belief propagation (BP) decoders. To improve message updates among iterations 

based on real-time parity-check feedback, we first introduce trainable parameters for better training on the most 

challenging error patterns; a unique data pipeline collects "uncorrected" frame samples at low SNR and generates 

log-likelihood ratios (LLRs) under the Additive White Gaussian Noise (AWGN) channel and Rayleigh flat-fading 

channel. The training scheme has two stages: (1) an end-to-end supervised stage focused on minimizing both soft-

BER and soft-FER loss across random noisy codewords, and (2) a boosting stage for learning residual corrections 

using mean-squared error on uncorrected frames. Performance is evaluated across various SNR levels, lifting 

factors, and code rates. Results show that BG1 outperforms BG2 in the AWGN channel by 1 dB and in the 

Rayleigh flat-fading channel by 2 dB. To balance reliability and decoding complexity, early convergence is 

achieved within 10 to 20 iterations. Additionally, lower rates and higher lifting factors produce sharper waterfalls 

and error floors   below 10−7 and 10−8 for AWGN and Rayleigh, respectively. The proposed framework 

generalizes to different channel types and LDPC designs and offers a 0.3 dB waterfall gain compared to traditional 

neural Min–Sum decoders. These results demonstrate adaptable, high-performance error correction suitable for 

various wireless applications, highlighting the practicality of syndrome-aware WMS neural decoding for future 

6G standards. 

 

Keywords: Base Graph-LDPC codes optimization, 6G-Neural LDPC decoder, Weighted min-sum decoding, 

Syndrome-aware learning, Uncorrected-frame boosting 

 

 

Introduction 
 

Advanced communication networks, such as 5G New Radio (NR) commonly utilize low-density parity-check 

(LDPC) codes as the coding scheme for data channels due to their excellent reliability and effectiveness 

(Richardson & Kudekar, 2018; TSGR, 2020) in achieving performance close to the Shannon limit (Chung et al., 

2001). LDPC codes employ iterative decoding (Fossorier, 2001) with multiple algorithms available. Sum standard 

sum-product (SP) algorithm is also known as the belief-propagation (BP) algorithm. Due to its computational 

complexity (Sun & Jiang, 2018), the BP technique achieves nearly optimal decoding performance. However, the 
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min-sum (MS) decoding algorithm (Kschischang et al, 2002), despite being slightly less efficient, is a suitable 

choice due to its significantly lower complexity.  

 

The transition toward 6G introduces additional issues, including 1. Dynamic Channel Conditions: Enhanced 

mobility and various applications require adaptable and resilient error correction. 2. Shorter Block Lengths: In 

ultra-low-latency applications, LDPC codes must perform efficiently with shortened codewords. 3. Scalability: 

The LDPC codes should effectively adapt to diverse block lengths, coding rates, and applications (Rowshan et 

al., 2024). To overcome this issue, various algorithms have been employed, including the offset min-sum and 

normalized min-sum (Chen et al., 2005; Wu et al., 2010), to optimize the MS decoding algorithm. The goal is to 

achieve near-perfect performance with the BP algorithm while minimizing complexity. Additionally, they are 

typically optimized for fixed channels like Additive White Gaussian Noise (AWGN), which reduces robustness 

in fading scenarios, such as Rayleigh fading. To ensure reliable communication in real-world applications, it is 

necessary to develop intelligent and adaptive decoding algorithms that can generalize across various uncertain 

channel conditions. Traditional MS decoding algorithms, due to their computational performance, exhibit 

considerable sub-optimality because they utilize uniform and constant weights across all decoding iterations. This 

inflexible structure is unsuitable for dynamic channel scenarios, causing degraded decoding effectiveness, 

particularly among non-Gaussian noise or channel distortions (Nachmani et al., 2017).  

 

Recent developments in neural decoding algorithms have focused on combining learnable parameters during the 

decoding procedure. However, they tend not to leverage key syndrome information. This data indicates the direct 

mathematical feedback given by the LDPC parity-check equations. Therefore, conventional neural decoders do 

not automatically modify their message-passing updates across decoding iterations and edges in response to real-

time signs of the decoding process's success or failure. In Dai et al. (2021) the researchers developed a neural 

Min-Sum (NMS) decoder strategy that combines iteration-by-iteration training and parameter sharing to address 

vanishing gradient problems and lower complexity during training.. The authors in Kwak et al. (2024) introduced 

boosted NMS decoders using a novel training methodology that utilizes two stages of the neural decoding process, 

where the second decoder is trained specifically to correct errors when the initial decoder fails to correct. A hybrid 

framework that uses standard neural MS variants combined with ordered statistics decoding OSD, developed by 

the authors in (Li & Yu, n.d.) through adaptive procedures, including dynamic error pattern grouping and iteration 

diversity, aims to enhance decoding beyond the error floor. Due to the lack of systematic training procedures for 

NMS decoding, as well as performance and training efficiency issues, the authors in Na et al. (2025) suggested 

optimal training methodologies integrated with dataset creation. These methodologies improve decoding 

performance beyond traditional techniques, particularly in the error floor region, while ensuring minimal 

computational complexity.  

 

The primary goal of the proposed system is to optimize decoding performance by developing an adaptive neural 

decoder structure based on a weighted Min-Sum (WMS) framework. The optimization and contributions of this 

study are summarized as follows: 

1. Develop a decoding framework for NMS with trainable parameters to improve message updating between 

the variable and check nodes, enabling adaptive message passing based on communication conditions. 

2. Integrate syndrome-aware learning to boost decoder performance and early convergence by enabling it to 

switch weight updates according to real-time parity-check feedback dynamically. 

3. The custom database workflow generates log-likelihood ratio (LLR) samples and simulates LDPC code 

performance across multiple channel models, collecting uncorrected real-time samples to highlight the 

learning framework in challenging decoding scenarios. 

 

The proposed framework aims to enhance training efficiency, significantly improve decoding performance, and 

increase model robustness compared to random uniform sampling, while generalizing across multiple channel 

types and providing a scalable solution for future wireless standards, such as 6G and beyond. This paper compares 

the performance of base graph (BG) LDPC code by evaluating BG1 and BG2, code lengths and code rates impacts 

on BG2 across AWGN, and Rayleigh fading channels, as well as the transmitting modulation technique of 

quadratic phase shift keying (QPSK). 

 

 

LDPC Base Graph Construction 
 

The [𝑁, 𝐾] LDPC code involves 𝑁 bits for the code length, 𝐾 bits for the information length, and 𝑀 = 𝑁 − 𝐾 

parity bits. The sparse parity-check matrix 𝐻 is commonly used to represent the LDPC code, which has dimensions 

𝑀 ×  𝑁 and a code rate of 𝑅 =  𝐾/𝑁. The codeword 𝑐 is represented by a binary vector of length 𝑁. The set of 

all codewords indicates the code. The code satisfies the condition  𝑐 ⋅ 𝐻𝑇 = 0. As demonstrated in the Tanner 
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(1981) graph presents a complete illustration of LDPC codes that helps the understanding of decoding methods. 

The Tanner graph is a bipartite graph representation that defines two sets of nodes: 𝑁 variable nodes (𝑉𝑁) of a 

set {𝑣0, 𝑣1, … , 𝑣𝑁−1}, and M check nodes (𝐶𝑁) of a set {𝑐0, 𝑐1, … , 𝑐𝑀−1}. An edge exists between the 

corresponding 𝑉𝑁 𝑣𝑗  and 𝐶𝑁  𝑐𝑖  only if 𝐻𝑖,𝑗 = 1. The 5G-NR system utilizes two distinct base matrices, BG1 and 

BG2 (Petrović et al., 2021). Without these blocks, we cannot construct the LDPC code or verify its error-correcting 

capabilities. The standards (Kumar et al., 2023) specify fixed sizes for both base graphs: BG1 measures 46×68, 

and BG2 measures 42×52. Table 1 details the criteria for BG1 and BG2 according to the 3GPP TS 38.212 standard 

(Nguyen et al., 2019). 

 

Table 1. The 5G-NR LDPC BG parameters 

Parameter BG 1 BG 2 

Base Graph dimension 46 × 68 42 × 52 

Code rate 1/3 ≤  𝑅 ≤  8/9 1/5 ≤  𝑅 ≤  2/3 

Systematic bits 

columns 

22 10 

No. of non-zero 

elements 

316 197 

Information lengths 500 ≤  𝐾 ≤  8448 40 ≤  𝐾 ≤  2560 

The sub-Matrices sizes 𝐀:  4 ×  22 ;  𝐄:  4 ×  4 ;  𝐎:  4 ×  42 

𝐁:  42 ×  22 ;  𝐂:  42
×  4 ;  𝐈:  42 ×  42 

𝐀:  4 ×  10 ;  𝐄:  4 ×  4 ;  𝐎:  4 ×  38 

𝐁:  38 ×  10 ;  𝐂:  38 ×  4 ;  𝐈:  38 ×  38 

 

The matrix fixed block structure is divided into columns consisting of three parts: information columns, core 

parity columns, and extension parity columns. Rows are subdivided into core check and extension check, as shown 

in Fig. 1. The matrix structure comprises submatrices A and B, which together form the kernel (the information 

part), while the submatrices E, O, C, and I are referred to as (extensions) for parity bit calculation. 

 

 
Figure 1. Base graph structure 

 

LDPC codes consist of multiple expansion factors, all of which are determined by the index 𝑖𝐿𝑆, which organizes 

the expansions. Equation (1) establishes the highest value of 384 for the expansion factor 𝑍𝐶. Each element in the 

base graph features a circularly shifted value ranging between -1 and 383. Two variables determine the expansion, 

factor 𝑎 and factor 𝐽𝑎, as described by the equation (1) and Table 2 for 𝑍𝐶 corresponding to 3GPP TS38.212 

standard (3GPP, 2020). 

 

𝑍𝐶 = 𝑎 × 2𝑗                                                                                           (1) 

 

Where {𝑎 ∶ 2,3,5,7,9,11,13,15}  and the value of  {𝑗: 0,1,2, ⋯ , 𝐽𝑎}, based on the set index 

( 𝑖𝐿𝑆 : 0, 1, 2, 3, 4, 5, 6, 7 ). The H matrix is a crucial component of LDPC codes, used for both encoding and 

decoding. To construct H, we replace every entry of the BG by a square matrix 𝑍𝐶 × 𝑍𝐶 . Generating the H matrix 

for LDPC codes is a meticulous process that must strike a balance between the requirements for sparsity, error-
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correcting capability, and computational efficiency. The process of transforming BG into an H matrix suitable for 

LDPC codes requires three main steps as follows: 

• Step 1: Replace (-1) entries in BG with a zero matrix of size 𝑍𝐶 × 𝑍𝐶 . 

• Step 2: Replace (0) entries in BG with an identity matrix 𝐼𝑍. 

 

Table 2. The LDPC-  𝑍𝐶  sets 

Set index (𝑖𝐿𝑆) Set of Lifting Sizes (𝑍𝐶 ) 

0 𝑍𝐶 = 2 × 2𝑗 ,   𝑗 = 0,1,2,3,4,5,6,7 → {2,  4,  8,  16,  32,  64,  128,  256} 

1 𝑍𝐶 = 3 × 2𝑗,   𝑗 = 0,1,2,3,4,5,6,7 → {3,  6,  12,  24,  48,  96,  192,  384} 

2 𝑍𝐶 = 5 × 2𝑗 ,   𝑗 = 0,1,2,3,4,5,6 → {5,  10,  20,  40,  80,  160,  320} 

3 𝑍𝐶 = 7 × 2𝑗 ,   𝑗 = 0,1,2,3,4,5 → {7,  14,  28,  56,  112,  224} 

4 𝑍𝐶 = 9 × 2𝑗 ,   𝑗 = 0,1,2,3,4,5 → {9,  18,  36,  72,  144,  288} 

5 𝑍𝐶 = 11 × 2𝑗 ,   𝑗 = 0,1,2,3,4,5 → {11,  22,  44,  88,  176,  352} 

6 .𝑍𝐶 = 13 × 2𝑗,   𝑗 = 0,1,2,3,4 → {13,  26,  52,  104,  208} 

7 𝑍𝐶 = 15 × 2𝑗 ,   𝑗 = 0,1,2,3,4 → {15,  30,  60,  120,  240} 

 

• Step 3: Replace (𝑖) entries in BG with an identity matrix 𝐼𝑍,but with a right shift performed 𝑖 times, where 𝑖 
ranges from 0 to 𝑍𝐶 − 1. 

 

The suggested parameters for BG1 and BG2 in this research are 𝑖𝐿𝑆 = 0 and 𝑍𝐶 = 8; meaning that the range of 

entries extends from -1 to 7. Every element in the BGs is converted into an 8 × 8 identity matrix that forms H. 

Table 3 outlines the specifications and corresponding values of BG 1 and BG 2, while Fig. 2 presents the 

configuration of the structured BG1. 

 

Table 3.Parameters and related values 

Parameter BG 1 BG 2 

Block length (𝑛𝑏) 68 52 

Information bits count (𝑘𝑏) 22 10 

Block rows 46 42 

Edges 316 197 

Columns weight (𝑤𝑣) 1 to 30 37 to 41 

Rows weight (𝑤𝑐) 3 to 19 47 to 51 

Code rates 0.32 0.19 

H field 𝔽2
368×544 𝔽2

336×416 

 

 
Figure 2. Base graph 1 matrix 

 

 

Neural Min-Sum Decoding for Base Graph LDPC Codes 
 

The min-sum (MS) decoding algorithm serves as an iterative decoding algorithm in which data are exchanged 

between variable nodes and check nodes with each iteration, having the message update criteria for check nodes 

close to the basic minimum operation (Na et al., 2025). To boost the algorithm's performance, the weighted MS 

(WMS) decoder technique (Kwak et al., 2024) was proposed, which incorporates an 𝛼 (normalization factor) into 

the 𝐶𝑁 messages. The NMS decoding technique (Dai et al., 2021) intends to improve the decoding performance 

by utilizing α as a learnable parameter and incorporating various weighting factors for iteration 𝑡. The WMS is an 
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iterative decoding procedure that passes data in the form of log-likelihood ratios (LLRs) via the edges of the 

𝑇𝑎𝑛𝑛𝑒𝑟 𝑔𝑟𝑎𝑝ℎ. The LLR of the 𝑣𝑡ℎ  bit in a transmitted binary codeword bit 𝑥 ∈ {0,1} is determined by 

comparing the noisy received signal vector 𝑦 to 𝑥,  given by: 

 

𝐿𝑣 =  𝑙𝑜𝑔
𝑃𝑟(𝑦𝑣|𝑥𝑣 = 0)

𝑃𝑟(𝑦𝑣|𝑥𝑣 = 1)
                                                             (2) 

 

𝑙𝑜𝑔(∙) stands for “logarithm base 2”, and 𝑃𝑟(𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑦𝑣|𝑠𝑒𝑛𝑡 𝑥𝑣) is the channel’s transition probability (or 

density) from the transmitted bits 𝑥 to the received vector 𝑦 illustrates the whole behavior of the channel, including 

bit flips, noise, and fading. At iteration 𝑡 in the iterative decoding process, the message that passes from 

(𝑉𝑁 𝑣 → 𝐶𝑁 𝑐) is: 
 

𝐿𝑣→𝑐
(𝑡)

= 𝐿𝑣 + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡−1)

𝑐′∈𝒩(𝑣) 𝑐⁄

                                                       (3) 

 

Where 𝒩(𝑣) is the sets of neighboring nodes 𝑉𝑁 𝑣, 𝑐′ indicates each of the other 𝐶𝑁s linked to the same 𝑉𝑁 𝑣, 

unless this 𝐶𝑁 𝑐 is where message updates are computed. The message passes (𝐶𝑁 𝑐 → 𝑉𝑁 𝑣) , 𝐿̂𝑐⟶𝑣
(𝑡)

: 
 

𝐿̂𝑐⟶𝑣
(𝑡)

= 2tanh−1 ( ∏ tanh (
𝐿

𝑣′→𝑐

(𝑡)

2
)

𝑣′∈𝒩(𝑐) 𝑣⁄

)                                     (4) 

 

𝒩(𝑐) is neighboring node set of 𝐶𝑁 𝑐, and 𝑣′ indicates all of the other 𝑉𝑁s linked to the same 𝐶𝑁 𝑣,except 𝑉𝑁 𝑣. 

The initial values are 𝐿𝑣→𝑐
(0)

= 𝐿𝑐ℎ ,and 𝐿̂𝑐⟶𝑣
(0)

=0, where 𝐿𝑐ℎ is the channel LLR. At first iteration (𝐿̂
𝑐′⟶𝑣

(𝑡−1)
 = 0) in 

(3), (𝐿𝑣→𝑐
(0)

= 𝐿𝑣) = 𝐿𝑐ℎ. After 𝑡 iterations of message-passing decoding, the soft estimation 𝑠𝑣  “best guess” of a 

posteriori LLR for 𝑥 bits in (2) being zero, compared to one, as: 
 

𝑠𝑣 = 𝐿𝑣 + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡)

𝑐′∈𝒩(𝑣) 

                                                            (5) 

 

The eq. (5) represents the combination of initial channel information 𝐿𝑣 and extrinsic information from all 

neighboring parity checks 𝐿̂
𝑐′⟶𝑣

(𝑡)
. 

 

The decision rule provided in (6) that converts the soft LLR estimate 𝑠𝑣   into a binary bit estimate 𝑥̂𝑣 ,as:  
 

𝑥̂𝑣 =
1 − 𝑠𝑔𝑛(𝑠𝑣)

2
                                          (6) 

 

Here’s how the sign function of soft estimation 𝑠𝑣   (𝑠𝑔𝑛(𝑠𝑣)) operates: 

 

𝑠𝑔𝑛(𝑠𝑣) = {

+1,       𝑠𝑣 > 0 
−1,       𝑠𝑣 < 0
0,           𝑠𝑣 = 0

   

 

The iterative decoding methodology explained previously is known as the belief-propagation (BP) algorithm or 

the sum-product (SP) algorithm. To decrease computing complexity in equation (4), caused by hyperbolic tangent 

functions and numerous multiplications, the MS approach is employed to derive equation (4) as:  
 

𝐿̂𝑐⟶𝑣
(𝑡)

= ( ∏ 𝑠𝑔𝑛(𝐿
𝑣′→𝑐

(𝑡)
)

𝑣′∈𝒩(𝑐) 𝑣⁄

) × min
𝑣′∈𝒩(𝑐) 𝑣⁄

|𝐿
𝑣′→𝑐

(𝑡)
|                  (7) 

 

In contrast to the SP approach, the MS approximation incurs a non-negligible efficiency loss. Other advanced MS 

algorithms were released in (Dai et al., 2021).  Thus, in this study, the neural MN (NMS) (Kwak et al., 2024) is 

adopted, incorporating the channel weight 𝑤𝑐ℎ
(𝑡)

, into equation (3) and the check node weight 𝑤𝑐→𝑣
(𝑡) (𝛼) for iteration 

𝑡 into equation (7) . So, the (𝑉𝑁 𝑣 → 𝐶𝑁 𝑐) update sublayer is written as: 
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𝐿𝑣→𝑐
(𝑡)

= 𝑤𝑐ℎ
(𝑡)

𝐿𝑐ℎ + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡−1)

𝑐′∈𝒩(𝑣) 𝑐⁄

                              (8) 

 

And (𝐶𝑁 𝑐 → 𝑉𝑁 𝑣) update sublayer as: 
 

𝐿̂𝑐⟶𝑣
(𝑡)

= 𝛼(𝑡) × ( ∏ 𝑠𝑔𝑛(𝐿
𝑣′→𝑐

(𝑡)
)

𝑣′∈𝒩(𝑐) 𝑣⁄

) × min
𝑣′∈𝒩(𝑐) 𝑣⁄

|𝐿
𝑣′→𝑐

(𝑡)
|                  (9) 

 

Finally, the 𝑣𝑡ℎ element of the output LLR vector 𝐿𝑣
𝑜  is calculated at the last iteration 𝑇 given by: 

 

𝐿𝑣
𝑜 = 𝐿𝑣

𝑐ℎ + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡)

𝑐′∈𝒩(𝑣) 

                   (10) 

 

The primary objective of this framework is to optimize the weights of the NMS decoder to improve the 

performance of the BG-LDPC code. 

 

 

Proposed BG-LDPC Code Scheme 
 

This section outlines the proposed system model design methodology step-by-step, as illustrated in Fig. 3. It also 

describes the neural network structure for training weights of the NMS decoder. 

 

 

The System Model 

 

The overall structure of the proposed adaptive WNMS decoder’s end-to-end process description is illustrated by 

the flowchart in Fig. 3. The initial step is collecting datasets. This study trains its neural network using a dataset 

of LDPC BGs and their associated BER. The details for these datasets derive from the 3GPP TS 38.212 standards. 

After the data collection step, the parameters 𝑍𝐶 , BG (BG1 or BG2), 𝑅, and 𝑖𝐿𝑆 are initialized. The BG has been 

loaded and converted to a flat form (sequence vectors 𝒮) to construct the 𝐻 ∈ {0,1}𝑀×𝑁 matrix after these 

parameters are parsed and fed into this mapping function. Circular right shifts are then applied based on 14. 
 
Based on shift values 𝑍𝐶 to encode the message using a lower triangular LDPC encoder in GF (2) to obtain a 

systematic form of 𝐻2 = [𝐼: 𝑃] and concatenate the message and parity bits to form the codeword( 𝐶 =
𝑚1, … , 𝑚𝐾 , 𝑝1, … , 𝑝(𝑁−𝐾)). The specified channels influence the transmitted QPSK signals (AWGN, and Rayleigh 

flat fading channel). The NMS algorithm is implemented through channel weights to enhance the LDPC code-

based BG matrix. The decision is made by (6) is to obtain the optimal estimation 𝑥  and tested by applying the 

syndrome rule 𝐻 ⋅ 𝑥̂𝑇 = 0 as the last step. 

 

 

Decoder Training Methodology 

 

The training procedure implemented in our work is based on a supervised learning technique called gradient-

based optimization. Specifically, we are applying Adam optimization (Kingma & Ba, 2015) to update the 

learnable parameters, which include the weight and bias tensors of a neural network-based LDPC decoder. Here's 

a detailed description of the neural network structure illustrated in Fig. 4. The neural network's input layer is a 

vector of channel LLR {𝐿1
𝑐ℎ , 𝐿2

𝑐ℎ , … , 𝐿𝑛
𝑐ℎ} having the same length as the number of 𝑉𝑁𝑠 𝑣 in the 𝑇𝑎𝑛𝑛𝑒𝑟 𝑔𝑟𝑎𝑝ℎ, 

and it produces the output layer LLR vector {𝐿1
𝑜 , 𝐿2

𝑜 , … , 𝐿𝑛
𝑜 }, also containing the same number of neurons. All 

hidden layers share the same size, which is equal to the number of edges in the Tanner graph . Two hidden layers 

(sublayers) are allocated for each decoding iteration 𝑡, with each containing one neuron corresponding to each 

edge in the Tanner graph. The variable node update (𝑉𝑁 𝑣 → 𝐶𝑁 𝑐) messages in (8) are produced by the odd 

hidden layers, while the even layers transmit the check node update (𝐶𝑁 𝑐 → 𝑉𝑁 𝑣) messages in (9). The input 

layer connected to all odd hidden layers represents the incorporation of the channel LLR in (8). The weight and 

bias tensors are updated using the Adam optimizer, a variant of gradient descent,are: the channel weight 𝑤𝑐ℎ
(𝑡)

, the 

check node weight {𝛼} 𝑡=1
𝑇 ,the 𝑉𝑁 edge weights  {𝑤𝑖𝑗

𝑣𝑛} along with the optional biases 𝑏𝑣𝑛, 𝑏𝑐𝑛 .  
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Figure 3.Diagram of the adaptive neural decoding procedures 

 

 
Figure 4.The network diagram of the proposed NMS decoder 

 

Collectively, these parameters define the forward pass: 

 

• The (𝑉𝑁 𝑣) update is: 

 

𝐿𝑣→𝑐
(𝑡)

= 𝑤𝑖𝑗
𝑣𝑛 × (𝑤𝑐ℎ

(𝑡)
𝐿𝑣

0 + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡−1)

𝑐′∈𝒩(𝑣) 𝑐⁄

)         ∀𝑖 ∈ 𝑣, 𝑗 ∈ 𝒩(𝑣)                 (11) 

 

• The (𝐶𝑁 𝑐) update is:  

 

𝐿̂𝑐⟶𝑣
(𝑡)

= 𝛼(𝑡) × ( ∏ 𝑠𝑔𝑛(𝐿
𝑣′→𝑐

(𝑡)
)

𝑣′∈𝒩(𝑐) 𝑣⁄

) × min
𝑣′∈𝒩(𝑐) 𝑣⁄

|𝐿
𝑣′→𝑐

(𝑡)
|         ∀𝑡 ∈ {1,2, … , 𝑇}         (12) 
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To train all learnable parameter weights 𝑤𝑐ℎ
(𝑡)

, 𝑤𝑖𝑗
𝑣𝑛 , and 𝛼 end-to-end while minimizing a syndrome-aware loss 

over a dataset that is randomly generated from synthetic noisy codewords, we feed a collection of samples into 

the neural network. After preparing the samples, generate noisy frame outlines as follows: 

 

1- For each SNR value 𝛾 ,draw a batch of 𝐵 random information bits 𝑥 ∈ {0,1}𝐾. 

2- Encode via the 𝐻 matrix and modulate (e.g., QPSK). 

3- Pass through the channel (AWGN, and Rayleigh fading channel) to obtain received vector 𝑦. 
 

For training, we generate a random received vector 𝑦 of length 𝑁, along with its corresponding channel LLR 

vector  {𝐿1
𝑐ℎ , 𝐿2

𝑐ℎ , … , 𝐿𝑛
𝑐ℎ}. After computing the channel LLRs in (2), the posteriori LLR (after 𝑇 iterations) is: 

 

𝐿𝑣
𝑜 = 𝑤𝑐ℎ𝐿𝑣

𝑐ℎ + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑇)

𝑐′∈𝒩(𝑣) 

                   (13) 

 

Consequently, we used loss functions in deep learning-based decoders, including the soft BER (Lian et al., 

2019)and FER (Xiao et al., 2021) loss functions.  

• The soft BER:  

ℒ𝐵𝐸𝑅 =
1

𝑁
∑ 𝜎(−

𝑁

𝑣=1

𝐿𝑣
𝑜 )                (14) 

 

Where the sigmoid function 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 and  𝑒 = 2.71828.  

• For FER loss function 

ℒ𝐹𝐸𝑅 =
1

𝐵 
∑

1

2
[1 − 𝑠𝑔𝑛(min

𝑗
𝐿𝑣

𝑜 )]

𝐵

𝑏=1

        (15) 

 

𝑏 is the number of frames.  

 

The behavior of the 𝑠𝑔𝑛(∙) function:  

 

• The forward propagation is:  

𝑠𝑔𝑛 (min
𝑗

𝐿𝑣
𝑜 ) =

2

1 + 𝑒
−𝑠𝑔𝑛(min

𝑗
𝐿𝑣

𝑜)
− 1         (16) 

 

• The Gradient backpropagation according to the Adam optimizer is: 

- Updating weights: 

 𝑤𝑛𝑒𝑤
(𝑡)

⟵ 𝑤𝑜𝑙𝑑
(𝑡)

− 𝛼
𝜕ℒ

𝜕𝑤(𝑡)
            (17) 

 
𝜕ℒ

𝜕𝑤(𝑡) refers to the gradient of the loss function (ℒ𝐵𝐸𝑅 , ℒ𝐹𝐸𝑅) with respect to the weight. 

- updating biases:  

𝑏𝑛𝑒𝑤
(𝑡)

⟵ 𝑏𝑜𝑙𝑑
(𝑡)

− 𝛼
𝜕ℒ

𝜕𝑏(𝑡)
      (18)  

 

In addition, the BER could vary significantly with a varying number of iterations throughout the training process, 

so the SNR must be allocated to different levels during training. Additionally, it is essential to note that both the 

trained weights and biases are shared across all lifted versions of the same base graph and distributed across every 

possible lifted code generated by the same base code. Algorithm 1 summarizes the suggested training techniques 

for the NMS decoder. 

 

Algorithm 1: Training The Neural LDPC Decoder: End-to-End Execution Logic 

Inputs: 

 𝑯 ∈ {𝟎, 𝟏}𝑴×𝑵: parity-check matrix 

𝑳𝒄𝒉
(𝟎)

 [𝟏. . 𝑵]: input LLRs: 𝑳𝒗 =  𝐥𝐨𝐠(𝑷𝒓(𝒚𝒗|𝒙𝒗 = 𝟎) 𝑷𝒓(𝒚𝒗|𝒙𝒗 = 𝟏)⁄ )  

𝑻: max number of iterations (hidden layers)  

𝒘𝒄𝒉: channel scaling weight (scalar)  
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𝒘𝒊𝒋
𝒗𝒏: VN‐edge weights for each edge 𝒊 → 𝒋  

𝜶[𝟏. . 𝑻]: learned CN‐scaling factors per iteration 

Output:  𝒙 [𝟏. . 𝑵] : estimated codeword (0/1) or declare failure 

step 1. Initialize all CN→VN messages to zero 

for each check node 𝒋 and each neighbor 𝒊 ∈  𝑴(𝒋): 
    𝑴𝒄𝒏 [𝒋 → 𝒊]  ←  𝟎 

step 2. Iterative Message Passing 

for 𝒕 from 1 to 𝑻 do 

    # 2.1 VN Update Sublayer: compute variable-to-check messages 

    for each variable node 𝒊 and each neighbor 𝒋 ∈  𝑵(𝒊) do 

        𝒔𝒖𝒎_ 𝒊𝒏   ←  𝟎 

        for each 𝒌 ∈  𝑵(𝒊) \ {𝒋} do 

            𝒔𝒖𝒎_𝒊𝒏 ←  𝒔𝒖𝒎_𝒊𝒏 + 𝑴𝒄𝒏[𝒌 → 𝒊] 
        end for 

        # weighted sum of channel LLR and incoming CN messages 

        𝑴𝒗𝒏[𝒊 → 𝒋]  ←  𝒘𝒊𝒋
𝒗𝒏  ∗  ( 𝒘𝒄𝒉  ∗  𝑳𝒄𝒉

(𝟎)
  +  𝒔𝒖𝒎_𝒊𝒏 ) 

    end for 

    # 2.2 CN Update Sublayer: compute check-to-variable messages 

    for each check node 𝒋 and each neighbor 𝒊 ∈  𝑴(𝒋) do 

        # product of signs 

        𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅  ←  𝟏 

        for each 𝒎 ∈  𝑴(𝒋) \ {𝒊} do 

            𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅  ←  𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅  ∗  𝒔𝒊𝒈𝒏( 𝑴_𝒗𝒏[𝒎 → 𝒋] ) 

        end for 

        # minimum magnitude 

        𝒎𝒊𝒏𝒗𝒂𝒍  ←  +∞ 

        for each 𝒎 ∈  𝑴(𝒋) \ {𝒊} do 

            if 𝒂𝒃𝒔(𝑴𝒗𝒏[𝒎 → 𝒋])  <  𝒎𝒊𝒏𝒗𝒂𝒍 then 

                𝒎𝒊𝒏_𝒗𝒂𝒍 ←  𝒂𝒃𝒔(𝑴𝒗𝒏[𝒎 → 𝒋]) 

            end if 

        end for 

 # 𝒍𝒆𝒂𝒓𝒏𝒆𝒅 𝑪𝑵‐ 𝒔𝒄𝒂𝒍𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓𝒔 𝒑𝒆𝒓 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒎𝒊𝒏 − 𝒔𝒖𝒎 𝒖𝒑𝒅𝒂𝒕𝒆 

        𝑴𝒄𝒏[𝒋 → 𝒊]  ←  𝜶[𝒕]  ∗  𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅  ∗  𝒎𝒊𝒏𝒗𝒂𝒍   

    end for 

end for 

step 3. A-Posteriori LLR Computation 

for each variable node 𝒊 do 

    𝑳𝒂𝒑𝒑[𝒊]  ←  𝒘𝒄𝒉  ∗  𝑳𝒄𝒉
(𝟎)

[𝒊] 

    for each 𝒋 ∈  𝑵(𝒊) do 

        𝑳𝒂𝒑𝒑[𝒊]  ←  𝑳𝒂𝒑𝒑[𝒊]  +  𝑴𝒄𝒏[𝒋 → 𝒊] 

    end for 

end for 

end for 

Feed 𝒚 into the NMS decoder corresponding 

to the base code 𝑪𝒋  after 𝒊 − 𝒕𝒉 iteration for the training 

values of SNR and obtain output 𝒔𝒗; 

Compute loss function based on (14), (15); 

Update 𝜶(𝑲)using gradient descent algorithm; 

Step4. Decision & Syndrome Check 

for 𝒊 from 𝟏 to 𝑵 do 

    𝒙 [𝒊]  ←  (𝟏 −  𝒔𝒊𝒈𝒏( 𝒔𝒗 )) / 𝟐      # maps positive 𝑳𝑳𝑹 →  𝟎, negative →  𝟏 

end for 

if 𝑯 ·  𝒙̂ᵀ ==  𝟎 then 

    return 𝒙̂    # decoding successful 

else 

    return 𝒙 ̂   # or declare decoding failure 

end if 
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Boosting Learning with Uncorrected Vectors 

 

Traditional end-to-end training strategies may perform poorly when noisy frames reach the correctable thresholds. 

We improve the decoding process by reutilizing the incorrect frames. The decoding process consists of two main 

stages: the base stage covers iteration{0,1, … , 𝑇1} where the 𝑉𝑁 𝑣 update multiplies by the learnable 𝑤𝑖𝑗
𝑣𝑛, and the 

post stage covers iteration {𝑇1, 𝑇1 + 1, … , 𝑇̅} , applying MS corrections using 𝛼. The post-decoder, built on 

boosting-learning theory, aims to mitigate the base-decoder's faults by learning from its errors. The decoding 

process is theoretically divided into two stages, but in practice, it performs as one decoder using learning weights 

using 𝛼 (base) and 𝑤𝑖𝑗
𝑣𝑛 (boosting). There are four main steps in our boosting training, as follows:  

 

Step 1. Collect uncorrected samples: Run the pretrained NMS decoder on a large test set of noisy codewords at 

low SNR, and collect frames where decoding fails (non-zero syndrome). Save their intermediate a posteriori LLR 

vectors for each frame, which serve as the input LLRs 𝐿𝑖
(0)

  and uncorrected vectors (base-decoder output) 𝐿𝑢𝑛
(𝑇)

. 

Step 2: Secondary training set: Residual target computation, in which we define the “ideal” (noiseless) reference 

LLRs vector as: 

 

𝐿𝑖
∗ =  𝑙𝑜𝑔

𝑃𝑟(𝑦𝑖|𝑥𝑖 = 0)

𝑃𝑟(𝑦𝑖|𝑥𝑖 = 1)
                  (𝑛𝑜 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑛𝑜𝑖𝑠𝑒)          (19) 

 

The residual learning corrections as: 

 

∆𝐿 = 𝐿∗ − 𝐿𝑢𝑛
(𝑇)

      ∈ ℝ𝑁                       (20) 

 

Where ℝ is 𝑑-dimensional input space of codeword 𝑁. 

 

Step 3. Boosting network stage: Repeat the same message-passing structure (NMS framework) with the learning 

rate and while feeding 𝐿𝑢𝑛
(𝑇)

 and the original 𝐿0as (boost) network 𝑓Θ, whose goal is to predict the output ∆𝐿 ̂ from 

the uncorrected frames 𝐿𝑢𝑛
(𝑇)

 and optionally 𝐿0. 

 

• Boost network prediction: 

∆𝐿 ̂ = 𝑓Θ𝑏𝑜𝑜𝑠𝑡
(𝐿𝑢𝑛

(𝑇)
, 𝐿0)          ∈ ℝ𝑁 

 

𝑓Θ(⋅) represents the forward function of the NMS-LDPC decoder, where Θ encompasses all the learnable 

parameters: {𝑤𝑐ℎ  ∈ ℝ, {𝑤𝑖𝑗
𝑣𝑛}

(𝑖,𝑗)𝜖ℰ
, {𝛼(𝑡)}

𝑡=1

𝑇
} .This function serves as a mathematical mapping from input to 

output, taking noisy observations, processing all 𝑉𝑁 𝑣  and 𝐶𝑁 𝑐 sublayers (with their per-edge and per-iteration 

weights), and producing updated beliefs. 

 

• Boosting loss: Train 𝑓Θ𝑏𝑜𝑜𝑠𝑡
 by minimizing the mean squared error (MSE) over a batch of size 𝐵 for each 

of the 𝑏 uncorrected frames, as (Cestari et al., 2024): 

•  

ℒ𝑏𝑜𝑜𝑠𝑡 =
1

𝐵𝑁
∑‖∆𝐿(𝑏) − ∆𝐿 ̂ (𝑏)‖

2

2
𝐵

𝑏=1

=
1

𝐵𝑁
∑ ∑(∆𝐿(𝑏) − ∆𝐿 ̂ (𝑏))

2
𝑁

𝑖=1

𝐵

𝑏=1

 

 

Step 4. Corrected LLR and the decision: After training, there are two stages of inference (base decoder and boost 

correction) to correct each uncorrected output: 

 

• Base decoder:  𝐿𝑢𝑛
(𝑇)

= 𝑓Θ𝑏𝑎𝑠𝑒
(𝐿0) 

• Boost correction: ∆𝐿 ̂ = 𝑓Θ𝑏𝑜𝑜𝑠𝑡
(𝐿𝑢𝑛

(𝑇)
, 𝐿0),     𝐿𝑐𝑜𝑟𝑟

(𝑇)
= 𝐿𝑢𝑛

(𝑇)
+ ∆𝐿 ̂  

 
This two-stage technique effectively eliminates "stuck" errors, resulting in an additional 0.1– 0.2 dB enhancement 

in waterfall performance. To map that belief into the final hard decision (0/1) estimate  𝑥̂: 

 

• Hard decision:   𝒙̂ 𝑖 =
1−𝑠𝑔𝑛(𝐿𝑐𝑜𝑟𝑟

(𝑇)
)

2
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This concludes the mathematical explanation of the boost-learning process by Syndrome Check: 
 

𝐻 ·  𝑥̂ᵀ =  0                    (𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦) 

 

 

Simulation Results 
 

Proposed Training Scheme 

    

For the BG-LDPC codes BG1 and BG2, with 𝑖𝐿𝑆 = 0 and 𝑍𝑐 = 8, we have selected decoding for evaluation 

purposes using the adaptive WMS-NMS decoder in an end-to-end training process. We employ a supervised, 

gradient-based approach that involves the message update rules in (11) and (12), which jointly optimize all 

learnable parameters (channel scaling 𝛼, 𝑤𝑐ℎ
(𝑡)

, and 𝑤𝑖𝑗
𝑣𝑛). The weights update method is iteration-by-iteration. The 

general workflow is shown in Algorithm 1 and Fig. 4. 

 

 

Performance Comparison 

     

We evaluate the proposed adaptive neural decoder (base + base-post) under AWGN and Rayleigh channel 

scenarios, BG configurations, lifting factors, and maximum number of decoding iterations. We collected 30000 

vectors and 10000 for training, with 5000 for testing and 5000 for validation. The maximum number of iterations 

was also set to 20 for all codes. At each SNR point, we collect at least 100 frame errors to measure the FER 

performance. The scenario of transmitting coded QPSK symbols under varying channel conditions is assumed. 

 

 

BG1 vs. BG2: AWGN channel 

 

The BER and FER for BG1 and BG2 over an AWGN channel were compared using different values of SNR  

(2 - 5) dB, as illustrated in Fig.5. In the waterfall region, BG1 is better than BG2 by about 1 dB, with BG1 

achieving a BER of approximately 1.33 × 10⁻⁷ at 4 dB, while BG2 requires 5 dB to reach a comparable BER of 

approximately 1.26 × 10⁻⁷. Additionally, regarding the error floor, both graphs indicate negligible error floors 

down to BER ≈  10⁻⁷ and FER ≈  10⁻⁶, demonstrating the effectiveness of the two-stage neural boosting decoder 

in pushing error rates into the ultra-reliable scheme(< 10⁻⁷). 
 

 
Figure 5.Performance of BG-LDPC over AWGN channel for BER and FER 

 

 

BG1 vs. BG2: Rayleigh Flat-Fading Channel 

 

Under Rayleigh fading, Fig. 6 shows both codes start with especially high error rates at 2 dB, indicating significant 

deep-fade effects. However, BG1's structure utilizes diversity more effectively when the SNR exceeds 

approximately 3 dB, leading to a much stronger waterfall effect. BG1 consistently achieves lower BER and FER 

across all SNRs, demonstrating more reliable frame decoding. BG1 outperforms BG2 with an approximate 2 dB 

improvement in BER. Additionally, BG1 enhances frame reliability compared to BG2. Below 5 dB, BG1 

maintains noteworthy performance in its error floor, which decreases significantly for both BER and FER, 

indicating that BG1 offers better resistance to strong fades and a sharper descent approach into the ultra-reliable 

system under Rayleigh fading. 
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Investigating the Impact of Code Rate 

 

We examine the effect of code rate on code performance, as illustrated in Fig. 7, which shows the (a) BER and 

(b) FER curves of BG2 for three LDPC codes (𝑘 = 10, 𝑍𝐶  = 8) with rates R = 0.19, 0.5, and 0.75 for the AWGN 

channel. The LDPC codes and their rates over the Rayleigh fading channel are shown in Fig. 8.  

 

 
Figure 6. Performance of BG-LDPC over Rayleigh flat-fading channel for BER and FER 

 

 
Figure 7. Comparison of code rates for AWGN channel for BER and FER 

 

Error correction is improved by more redundancy (lower R), meaning the error rate curve shifts to the right for 

higher SNR. For the highest rate value (BG2, AWGN at R=0.75), we achieve BER =  3.03e-05 and FER = 7.58e-

04 at 7 dB, while (BG2, Rayleigh) requires SNR = 10 to reach BER = 4.87e-04 and FER = 2.20e-02. The R=0.19 

code (416, 80) outperforms R=0.5 (160, 80) by up to 1.1dB and R=0.75 (104, 80) by up to 3.34 dB in the waterfall 

at BER= 10−4 for AWGN channel. 

 

 
Figure 8. Comparison of code rates for Rayleigh fading channel for BER and FER 

 

 

Block Length Effect 

 

We are increasing the block length 𝑁 by varying the lifting factor 𝑍𝐶 according to Table 2 for a fixed BG2 (𝑅 =
0.19, 𝑖𝐿𝑆 = 0, 𝑘 = 10) in Fig. 9. The values were chosen at index 𝑖𝐿𝑆 = 0  

(𝑍𝐶 = 2,4,8,16,32), which produce (𝑁 = 104,208,416,832,1664), respectively. As 𝑍𝐶  grows, performance 

improves significantly as 𝑁 increases and cycle distributions become better. For BG2, BER falls from 

3.94 × 10⁻⁴ (𝑍𝐶  = 2) to 1.50 × 10⁻⁸ (𝑍𝐶  = 32), while FER decreases from 2.08 × 10⁻³ (𝑍𝐶  = 2) to 

8.00 × 10⁻⁷ (𝑍𝐶  = 32) at SNR= 5 dB under the AWGN channel. For Rayleigh Flat-Fading channel 
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performance the selected values were (𝑍𝐶 = 2,4,8,16), yielding (𝑁 = 104,208,416,832), at the same index 𝑖𝐿𝑆 =
0, as shown in Fig. 10. 

 

 
Figure 9. Comparison of lifting factor for AWGN channel for BER and FER 

 

 
Figure 10. Comparison of lifting factor for Rayleigh fading channel for BER and FER 

 

 

Channel-Scaling Coefficients 

 

The impact of α on LDPC code performance is illustrated in Fig. with selected values (0.5, 0.75, 0.8, 0.9, and 1) 

under BG2, AWGN with R = 0.19, , 𝑍𝐶  = 8. A higher value of the scalar CN weight α accelerates convergence 

and produces reduced error rates, BER/FER, at low and moderate SNRs. The optimal performance occurs at 

α = 1, achieving BER=5.19e-07 and FER1.23e-05 at SNR=4.5 dB. Beyond approximately 3.5 dB, all 

configurations essentially reach the same error floor, so tuning α is most helpful when the channel is relatively 

noisy. 

 

 
Figure 11. Comparison of check node for AWGN channel for BER and FER 

 

 

Selection Criteria and Computational Overhead 

 



International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia 

587 

 

Selection of uncorrected frames for which the syndrome check not equal to zero,as: 

  
𝑠 = 𝐻 ·  𝑥̂ᵀ ≠  0                     

 

After maximum number of decoding iterations T=20 at SNR ≤ 2 dB is collected as “hard” samples for boosting. 

Fig. 12 displays the distribution of uncorrected frames over iterations. The number of uncorrected frames dropped 

from 5000 to 289 during the base decoder stage. At Base + Post, it was reduced to 2 frames, resulting in an 

improvement of 99%. The computational cost on an NVIDIA RTX 3090 GPU, the boosting stage adds 

approximately 15 % to the end-to-end training time 

 

 
Figure 12. Distribution of uncorrected frames over iterations 

 

 

Decoder Comparison 

 

To explain the effectiveness of the proposed hybrid learning methodology, we compare decoding performance, 

BER, and FER using the AWGN channel for four cases: the MS, WMS, NMS Base decoder, and NMS Base + 

Post decoder, as shown in Fig. 13. The WMS decoder uses w(int-cn)=1 and w(int-ch)=1. While the WMS decoder 

exhibits better waterfall performance than the baseline MS decoder by 0.4 dB at 0.00001 BER, it still shows a 

significant error floor. The NMS Base decoder shows excellent performance in the waterfall region, similar to the 

performance curve of the WMS decoder, with a BER of 4.33e-06 and FER of 1.00e-04 at 4.5 dB. To improve both 

the waterfall region and error floor performance, the NMS Base + Post decoder, at SNR = 5 dB, achieves a BER 

of 1.42e-07 and FER of 3.18e-06, demonstrating superior performance with a 0.8 dB gain compared to the MS 

decoder. 

 

 
Figure 13. Comparison of decoder algorithm performance for BER and FER 

 

 

Conclusion 
 

In this study, the performance of the LDPC base-graph is improved in this work to meet to the requirements for 

6G applications. We introduce a flexible and integrated two-stage adaptive neural decoding technique that 
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incorporates a weighted Min-Sum (WMS) algorithm and syndrome-aware learning, utilizing parity-check 

feedback in real-time. In the first step, the Base decoder learns parameters including channel-scaling coefficients 

𝛼 end-to-end, per-iteration check-node weights𝑤𝑐ℎ
(𝑡)

, and, and per-edge variable-node parameters 𝑤𝑖𝑗
𝑣𝑛 ,  to jointly 

minimize loss functions, specifically a soft BER/FER. The second step, Base+Post, follows the same workflow 

and retrains the decoder using uncorrected frames to fine-tune residual correction weights, leading to a 0.83 dB 

waterfall improvement compared to traditional MS decoding at a 0.00001 BER value. The decoder optimizes its 

message-passing parameters based on error patterns and channel conditions. Various code rates (0.19 to 0.75) and 

lifting factors (Z = 2 to 32) were tested with different SNR values at a maximum of 20 iterations using QPSK 

schemes, along with comprehensive simulations that extend across AWGN and Rayleigh channels, demonstrating 

that BG1 outperforms BG2 in waterfalls and error floors. The adaptive WMS-NMS decoder offers an excellent 

solution for highly reliable, low-latency 6G scenarios, achieving BP-level accuracy with flexible channel 

adaptation and limited complexity. 

 

 

Recommendations 
 

According to the findings of our neural MS, this study offers the following recommendations: 

1. Adaptation of dynamic scaling parameters: Adopt per-iteration learnable parameter check-node scaling 

factors (α) instead of a fixed value, while ensuring parameter sharing across iterations to reduce model 

complexity for the neural network. 

2. Integration of hardware and real-time analysis: Evaluate real-time throughput, delay, and power usage 

by prototyping the proposed WMS decoder on FPGA or ASIC configurations to identify trade-offs 

between hardware complexity (latency, area, power) and decoding accuracy (error performance). 

3. Modulation systems and models for wider networks: To assess efficiency in more challenging and 

practical wireless scenarios, examine the decoder's adaptability across higher-order modulations (16-

QAM, 64-QAM) and various fading patterns (such as Nakagami-m and Rician). 
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