

The Eurasia Proceedings of Science, Technology,

Engineering & Mathematics (EPSTEM)

ISSN: 2602-3199

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License,

permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the Conference

© 2025 Published by ISRES Publishing: www.isres.org

The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 2025

Volume 37, Pages 574-589

ICEAT 2025: International Conference on Engineering and Advanced Technology

Learning About Syndrome Awareness and WMS Algorithm for Adaptive

Neural Decoding for 6G LDPC Base Graph Enhancement

Noor Salih Mohammed

Al-Furat Al-Al-Awsat Technical University

Ahmed Ghanim Wadday

Al-Furat Al-Al-Awsat Technical University

Bashar Jabbar Hamza

Al-Furat Al-Al-Awsat Technical University

Abstract: 6G wireless communication networks require low-latency, ultra-reliable error correction capabilities

that adapt to dynamic channel scenarios and block lengths. This study presents a new adaptive neural decoding

workflow for 5G-New Radio LDPC base graphs (BG1 and BG2). It combines a weighted Min-Sum (WMS)

algorithm with syndrome-aware learning that uses parity-check feedback to guide neural decoding in two key

ways: syndrome-based loss and syndrome-conditioned message updates. This approach overcomes the limitations

of traditional min-sum (MS) and belief propagation (BP) decoders. To improve message updates among iterations

based on real-time parity-check feedback, we first introduce trainable parameters for better training on the most

challenging error patterns; a unique data pipeline collects "uncorrected" frame samples at low SNR and generates

log-likelihood ratios (LLRs) under the Additive White Gaussian Noise (AWGN) channel and Rayleigh flat-fading

channel. The training scheme has two stages: (1) an end-to-end supervised stage focused on minimizing both soft-

BER and soft-FER loss across random noisy codewords, and (2) a boosting stage for learning residual corrections

using mean-squared error on uncorrected frames. Performance is evaluated across various SNR levels, lifting

factors, and code rates. Results show that BG1 outperforms BG2 in the AWGN channel by 1 dB and in the

Rayleigh flat-fading channel by 2 dB. To balance reliability and decoding complexity, early convergence is

achieved within 10 to 20 iterations. Additionally, lower rates and higher lifting factors produce sharper waterfalls

and error floors below 10−7 and 10−8 for AWGN and Rayleigh, respectively. The proposed framework

generalizes to different channel types and LDPC designs and offers a 0.3 dB waterfall gain compared to traditional

neural Min–Sum decoders. These results demonstrate adaptable, high-performance error correction suitable for

various wireless applications, highlighting the practicality of syndrome-aware WMS neural decoding for future

6G standards.

Keywords: Base Graph-LDPC codes optimization, 6G-Neural LDPC decoder, Weighted min-sum decoding,

Syndrome-aware learning, Uncorrected-frame boosting

Introduction

Advanced communication networks, such as 5G New Radio (NR) commonly utilize low-density parity-check

(LDPC) codes as the coding scheme for data channels due to their excellent reliability and effectiveness

(Richardson & Kudekar, 2018; TSGR, 2020) in achieving performance close to the Shannon limit (Chung et al.,

2001). LDPC codes employ iterative decoding (Fossorier, 2001) with multiple algorithms available. Sum standard

sum-product (SP) algorithm is also known as the belief-propagation (BP) algorithm. Due to its computational

complexity (Sun & Jiang, 2018), the BP technique achieves nearly optimal decoding performance. However, the

http://www.isres.org/

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

575

min-sum (MS) decoding algorithm (Kschischang et al, 2002), despite being slightly less efficient, is a suitable

choice due to its significantly lower complexity.

The transition toward 6G introduces additional issues, including 1. Dynamic Channel Conditions: Enhanced

mobility and various applications require adaptable and resilient error correction. 2. Shorter Block Lengths: In

ultra-low-latency applications, LDPC codes must perform efficiently with shortened codewords. 3. Scalability:

The LDPC codes should effectively adapt to diverse block lengths, coding rates, and applications (Rowshan et

al., 2024). To overcome this issue, various algorithms have been employed, including the offset min-sum and

normalized min-sum (Chen et al., 2005; Wu et al., 2010), to optimize the MS decoding algorithm. The goal is to

achieve near-perfect performance with the BP algorithm while minimizing complexity. Additionally, they are

typically optimized for fixed channels like Additive White Gaussian Noise (AWGN), which reduces robustness

in fading scenarios, such as Rayleigh fading. To ensure reliable communication in real-world applications, it is

necessary to develop intelligent and adaptive decoding algorithms that can generalize across various uncertain

channel conditions. Traditional MS decoding algorithms, due to their computational performance, exhibit

considerable sub-optimality because they utilize uniform and constant weights across all decoding iterations. This

inflexible structure is unsuitable for dynamic channel scenarios, causing degraded decoding effectiveness,

particularly among non-Gaussian noise or channel distortions (Nachmani et al., 2017).

Recent developments in neural decoding algorithms have focused on combining learnable parameters during the

decoding procedure. However, they tend not to leverage key syndrome information. This data indicates the direct

mathematical feedback given by the LDPC parity-check equations. Therefore, conventional neural decoders do

not automatically modify their message-passing updates across decoding iterations and edges in response to real-

time signs of the decoding process's success or failure. In Dai et al. (2021) the researchers developed a neural

Min-Sum (NMS) decoder strategy that combines iteration-by-iteration training and parameter sharing to address

vanishing gradient problems and lower complexity during training.. The authors in Kwak et al. (2024) introduced

boosted NMS decoders using a novel training methodology that utilizes two stages of the neural decoding process,

where the second decoder is trained specifically to correct errors when the initial decoder fails to correct. A hybrid

framework that uses standard neural MS variants combined with ordered statistics decoding OSD, developed by

the authors in (Li & Yu, n.d.) through adaptive procedures, including dynamic error pattern grouping and iteration

diversity, aims to enhance decoding beyond the error floor. Due to the lack of systematic training procedures for

NMS decoding, as well as performance and training efficiency issues, the authors in Na et al. (2025) suggested

optimal training methodologies integrated with dataset creation. These methodologies improve decoding

performance beyond traditional techniques, particularly in the error floor region, while ensuring minimal

computational complexity.

The primary goal of the proposed system is to optimize decoding performance by developing an adaptive neural

decoder structure based on a weighted Min-Sum (WMS) framework. The optimization and contributions of this

study are summarized as follows:

1. Develop a decoding framework for NMS with trainable parameters to improve message updating between

the variable and check nodes, enabling adaptive message passing based on communication conditions.

2. Integrate syndrome-aware learning to boost decoder performance and early convergence by enabling it to

switch weight updates according to real-time parity-check feedback dynamically.

3. The custom database workflow generates log-likelihood ratio (LLR) samples and simulates LDPC code

performance across multiple channel models, collecting uncorrected real-time samples to highlight the

learning framework in challenging decoding scenarios.

The proposed framework aims to enhance training efficiency, significantly improve decoding performance, and

increase model robustness compared to random uniform sampling, while generalizing across multiple channel

types and providing a scalable solution for future wireless standards, such as 6G and beyond. This paper compares

the performance of base graph (BG) LDPC code by evaluating BG1 and BG2, code lengths and code rates impacts

on BG2 across AWGN, and Rayleigh fading channels, as well as the transmitting modulation technique of

quadratic phase shift keying (QPSK).

LDPC Base Graph Construction

The [𝑁, 𝐾] LDPC code involves 𝑁 bits for the code length, 𝐾 bits for the information length, and 𝑀 = 𝑁 − 𝐾

parity bits. The sparse parity-check matrix 𝐻 is commonly used to represent the LDPC code, which has dimensions

𝑀 × 𝑁 and a code rate of 𝑅 = 𝐾/𝑁. The codeword 𝑐 is represented by a binary vector of length 𝑁. The set of

all codewords indicates the code. The code satisfies the condition 𝑐 ⋅ 𝐻𝑇 = 0. As demonstrated in the Tanner

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

576

(1981) graph presents a complete illustration of LDPC codes that helps the understanding of decoding methods.

The Tanner graph is a bipartite graph representation that defines two sets of nodes: 𝑁 variable nodes (𝑉𝑁) of a

set {𝑣0, 𝑣1, … , 𝑣𝑁−1}, and M check nodes (𝐶𝑁) of a set {𝑐0, 𝑐1, … , 𝑐𝑀−1}. An edge exists between the

corresponding 𝑉𝑁 𝑣𝑗 and 𝐶𝑁 𝑐𝑖 only if 𝐻𝑖,𝑗 = 1. The 5G-NR system utilizes two distinct base matrices, BG1 and

BG2 (Petrović et al., 2021). Without these blocks, we cannot construct the LDPC code or verify its error-correcting

capabilities. The standards (Kumar et al., 2023) specify fixed sizes for both base graphs: BG1 measures 46×68,

and BG2 measures 42×52. Table 1 details the criteria for BG1 and BG2 according to the 3GPP TS 38.212 standard

(Nguyen et al., 2019).

Table 1. The 5G-NR LDPC BG parameters

Parameter BG 1 BG 2

Base Graph dimension 46 × 68 42 × 52

Code rate 1/3 ≤ 𝑅 ≤ 8/9 1/5 ≤ 𝑅 ≤ 2/3

Systematic bits

columns

22 10

No. of non-zero

elements

316 197

Information lengths 500 ≤ 𝐾 ≤ 8448 40 ≤ 𝐾 ≤ 2560

The sub-Matrices sizes 𝐀: 4 × 22 ; 𝐄: 4 × 4 ; 𝐎: 4 × 42

𝐁: 42 × 22 ; 𝐂: 42
× 4 ; 𝐈: 42 × 42

𝐀: 4 × 10 ; 𝐄: 4 × 4 ; 𝐎: 4 × 38

𝐁: 38 × 10 ; 𝐂: 38 × 4 ; 𝐈: 38 × 38

The matrix fixed block structure is divided into columns consisting of three parts: information columns, core

parity columns, and extension parity columns. Rows are subdivided into core check and extension check, as shown

in Fig. 1. The matrix structure comprises submatrices A and B, which together form the kernel (the information

part), while the submatrices E, O, C, and I are referred to as (extensions) for parity bit calculation.

Figure 1. Base graph structure

LDPC codes consist of multiple expansion factors, all of which are determined by the index 𝑖𝐿𝑆, which organizes

the expansions. Equation (1) establishes the highest value of 384 for the expansion factor 𝑍𝐶. Each element in the

base graph features a circularly shifted value ranging between -1 and 383. Two variables determine the expansion,

factor 𝑎 and factor 𝐽𝑎, as described by the equation (1) and Table 2 for 𝑍𝐶 corresponding to 3GPP TS38.212

standard (3GPP, 2020).

𝑍𝐶 = 𝑎 × 2𝑗 (1)

Where {𝑎 ∶ 2,3,5,7,9,11,13,15} and the value of {𝑗: 0,1,2, ⋯ , 𝐽𝑎}, based on the set index

(𝑖𝐿𝑆 : 0, 1, 2, 3, 4, 5, 6, 7). The H matrix is a crucial component of LDPC codes, used for both encoding and

decoding. To construct H, we replace every entry of the BG by a square matrix 𝑍𝐶 × 𝑍𝐶 . Generating the H matrix

for LDPC codes is a meticulous process that must strike a balance between the requirements for sparsity, error-

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

577

correcting capability, and computational efficiency. The process of transforming BG into an H matrix suitable for

LDPC codes requires three main steps as follows:

• Step 1: Replace (-1) entries in BG with a zero matrix of size 𝑍𝐶 × 𝑍𝐶 .

• Step 2: Replace (0) entries in BG with an identity matrix 𝐼𝑍.

Table 2. The LDPC- 𝑍𝐶 sets

Set index (𝑖𝐿𝑆) Set of Lifting Sizes (𝑍𝐶)

0 𝑍𝐶 = 2 × 2𝑗 , 𝑗 = 0,1,2,3,4,5,6,7 → {2, 4, 8, 16, 32, 64, 128, 256}

1 𝑍𝐶 = 3 × 2𝑗, 𝑗 = 0,1,2,3,4,5,6,7 → {3, 6, 12, 24, 48, 96, 192, 384}

2 𝑍𝐶 = 5 × 2𝑗 , 𝑗 = 0,1,2,3,4,5,6 → {5, 10, 20, 40, 80, 160, 320}

3 𝑍𝐶 = 7 × 2𝑗 , 𝑗 = 0,1,2,3,4,5 → {7, 14, 28, 56, 112, 224}

4 𝑍𝐶 = 9 × 2𝑗 , 𝑗 = 0,1,2,3,4,5 → {9, 18, 36, 72, 144, 288}

5 𝑍𝐶 = 11 × 2𝑗 , 𝑗 = 0,1,2,3,4,5 → {11, 22, 44, 88, 176, 352}

6 .𝑍𝐶 = 13 × 2𝑗, 𝑗 = 0,1,2,3,4 → {13, 26, 52, 104, 208}

7 𝑍𝐶 = 15 × 2𝑗 , 𝑗 = 0,1,2,3,4 → {15, 30, 60, 120, 240}

• Step 3: Replace (𝑖) entries in BG with an identity matrix 𝐼𝑍,but with a right shift performed 𝑖 times, where 𝑖
ranges from 0 to 𝑍𝐶 − 1.

The suggested parameters for BG1 and BG2 in this research are 𝑖𝐿𝑆 = 0 and 𝑍𝐶 = 8; meaning that the range of

entries extends from -1 to 7. Every element in the BGs is converted into an 8 × 8 identity matrix that forms H.

Table 3 outlines the specifications and corresponding values of BG 1 and BG 2, while Fig. 2 presents the

configuration of the structured BG1.

Table 3.Parameters and related values

Parameter BG 1 BG 2

Block length (𝑛𝑏) 68 52

Information bits count (𝑘𝑏) 22 10

Block rows 46 42

Edges 316 197

Columns weight (𝑤𝑣) 1 to 30 37 to 41

Rows weight (𝑤𝑐) 3 to 19 47 to 51

Code rates 0.32 0.19

H field 𝔽2
368×544 𝔽2

336×416

Figure 2. Base graph 1 matrix

Neural Min-Sum Decoding for Base Graph LDPC Codes

The min-sum (MS) decoding algorithm serves as an iterative decoding algorithm in which data are exchanged

between variable nodes and check nodes with each iteration, having the message update criteria for check nodes

close to the basic minimum operation (Na et al., 2025). To boost the algorithm's performance, the weighted MS

(WMS) decoder technique (Kwak et al., 2024) was proposed, which incorporates an 𝛼 (normalization factor) into

the 𝐶𝑁 messages. The NMS decoding technique (Dai et al., 2021) intends to improve the decoding performance

by utilizing α as a learnable parameter and incorporating various weighting factors for iteration 𝑡. The WMS is an

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

578

iterative decoding procedure that passes data in the form of log-likelihood ratios (LLRs) via the edges of the

𝑇𝑎𝑛𝑛𝑒𝑟 𝑔𝑟𝑎𝑝ℎ. The LLR of the 𝑣𝑡ℎ bit in a transmitted binary codeword bit 𝑥 ∈ {0,1} is determined by

comparing the noisy received signal vector 𝑦 to 𝑥, given by:

𝐿𝑣 = 𝑙𝑜𝑔
𝑃𝑟(𝑦𝑣|𝑥𝑣 = 0)

𝑃𝑟(𝑦𝑣|𝑥𝑣 = 1)
 (2)

𝑙𝑜𝑔(∙) stands for “logarithm base 2”, and 𝑃𝑟(𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑦𝑣|𝑠𝑒𝑛𝑡 𝑥𝑣) is the channel’s transition probability (or

density) from the transmitted bits 𝑥 to the received vector 𝑦 illustrates the whole behavior of the channel, including

bit flips, noise, and fading. At iteration 𝑡 in the iterative decoding process, the message that passes from

(𝑉𝑁 𝑣 → 𝐶𝑁 𝑐) is:

𝐿𝑣→𝑐
(𝑡)

= 𝐿𝑣 + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡−1)

𝑐′∈𝒩(𝑣) 𝑐⁄

 (3)

Where 𝒩(𝑣) is the sets of neighboring nodes 𝑉𝑁 𝑣, 𝑐′ indicates each of the other 𝐶𝑁s linked to the same 𝑉𝑁 𝑣,

unless this 𝐶𝑁 𝑐 is where message updates are computed. The message passes (𝐶𝑁 𝑐 → 𝑉𝑁 𝑣) , 𝐿̂𝑐⟶𝑣
(𝑡)

:

𝐿̂𝑐⟶𝑣
(𝑡)

= 2tanh−1 (∏ tanh (
𝐿

𝑣′→𝑐

(𝑡)

2
)

𝑣′∈𝒩(𝑐) 𝑣⁄

) (4)

𝒩(𝑐) is neighboring node set of 𝐶𝑁 𝑐, and 𝑣′ indicates all of the other 𝑉𝑁s linked to the same 𝐶𝑁 𝑣,except 𝑉𝑁 𝑣.

The initial values are 𝐿𝑣→𝑐
(0)

= 𝐿𝑐ℎ ,and 𝐿̂𝑐⟶𝑣
(0)

=0, where 𝐿𝑐ℎ is the channel LLR. At first iteration (𝐿̂
𝑐′⟶𝑣

(𝑡−1)
 = 0) in

(3), (𝐿𝑣→𝑐
(0)

= 𝐿𝑣) = 𝐿𝑐ℎ. After 𝑡 iterations of message-passing decoding, the soft estimation 𝑠𝑣 “best guess” of a

posteriori LLR for 𝑥 bits in (2) being zero, compared to one, as:

𝑠𝑣 = 𝐿𝑣 + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡)

𝑐′∈𝒩(𝑣)

 (5)

The eq. (5) represents the combination of initial channel information 𝐿𝑣 and extrinsic information from all

neighboring parity checks 𝐿̂
𝑐′⟶𝑣

(𝑡)
.

The decision rule provided in (6) that converts the soft LLR estimate 𝑠𝑣 into a binary bit estimate 𝑥̂𝑣 ,as:

𝑥̂𝑣 =
1 − 𝑠𝑔𝑛(𝑠𝑣)

2
 (6)

Here’s how the sign function of soft estimation 𝑠𝑣 (𝑠𝑔𝑛(𝑠𝑣)) operates:

𝑠𝑔𝑛(𝑠𝑣) = {

+1, 𝑠𝑣 > 0
−1, 𝑠𝑣 < 0
0, 𝑠𝑣 = 0

The iterative decoding methodology explained previously is known as the belief-propagation (BP) algorithm or

the sum-product (SP) algorithm. To decrease computing complexity in equation (4), caused by hyperbolic tangent

functions and numerous multiplications, the MS approach is employed to derive equation (4) as:

𝐿̂𝑐⟶𝑣
(𝑡)

= (∏ 𝑠𝑔𝑛(𝐿
𝑣′→𝑐

(𝑡)
)

𝑣′∈𝒩(𝑐) 𝑣⁄

) × min
𝑣′∈𝒩(𝑐) 𝑣⁄

|𝐿
𝑣′→𝑐

(𝑡)
| (7)

In contrast to the SP approach, the MS approximation incurs a non-negligible efficiency loss. Other advanced MS

algorithms were released in (Dai et al., 2021). Thus, in this study, the neural MN (NMS) (Kwak et al., 2024) is

adopted, incorporating the channel weight 𝑤𝑐ℎ
(𝑡)

, into equation (3) and the check node weight 𝑤𝑐→𝑣
(𝑡) (𝛼) for iteration

𝑡 into equation (7) . So, the (𝑉𝑁 𝑣 → 𝐶𝑁 𝑐) update sublayer is written as:

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

579

𝐿𝑣→𝑐
(𝑡)

= 𝑤𝑐ℎ
(𝑡)

𝐿𝑐ℎ + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡−1)

𝑐′∈𝒩(𝑣) 𝑐⁄

 (8)

And (𝐶𝑁 𝑐 → 𝑉𝑁 𝑣) update sublayer as:

𝐿̂𝑐⟶𝑣
(𝑡)

= 𝛼(𝑡) × (∏ 𝑠𝑔𝑛(𝐿
𝑣′→𝑐

(𝑡)
)

𝑣′∈𝒩(𝑐) 𝑣⁄

) × min
𝑣′∈𝒩(𝑐) 𝑣⁄

|𝐿
𝑣′→𝑐

(𝑡)
| (9)

Finally, the 𝑣𝑡ℎ element of the output LLR vector 𝐿𝑣
𝑜 is calculated at the last iteration 𝑇 given by:

𝐿𝑣
𝑜 = 𝐿𝑣

𝑐ℎ + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡)

𝑐′∈𝒩(𝑣)

 (10)

The primary objective of this framework is to optimize the weights of the NMS decoder to improve the

performance of the BG-LDPC code.

Proposed BG-LDPC Code Scheme

This section outlines the proposed system model design methodology step-by-step, as illustrated in Fig. 3. It also

describes the neural network structure for training weights of the NMS decoder.

The System Model

The overall structure of the proposed adaptive WNMS decoder’s end-to-end process description is illustrated by

the flowchart in Fig. 3. The initial step is collecting datasets. This study trains its neural network using a dataset

of LDPC BGs and their associated BER. The details for these datasets derive from the 3GPP TS 38.212 standards.

After the data collection step, the parameters 𝑍𝐶 , BG (BG1 or BG2), 𝑅, and 𝑖𝐿𝑆 are initialized. The BG has been

loaded and converted to a flat form (sequence vectors 𝒮) to construct the 𝐻 ∈ {0,1}𝑀×𝑁 matrix after these

parameters are parsed and fed into this mapping function. Circular right shifts are then applied based on 14.

Based on shift values 𝑍𝐶 to encode the message using a lower triangular LDPC encoder in GF (2) to obtain a

systematic form of 𝐻2 = [𝐼: 𝑃] and concatenate the message and parity bits to form the codeword(𝐶 =
𝑚1, … , 𝑚𝐾 , 𝑝1, … , 𝑝(𝑁−𝐾)). The specified channels influence the transmitted QPSK signals (AWGN, and Rayleigh

flat fading channel). The NMS algorithm is implemented through channel weights to enhance the LDPC code-

based BG matrix. The decision is made by (6) is to obtain the optimal estimation 𝑥 and tested by applying the

syndrome rule 𝐻 ⋅ 𝑥̂𝑇 = 0 as the last step.

Decoder Training Methodology

The training procedure implemented in our work is based on a supervised learning technique called gradient-

based optimization. Specifically, we are applying Adam optimization (Kingma & Ba, 2015) to update the

learnable parameters, which include the weight and bias tensors of a neural network-based LDPC decoder. Here's

a detailed description of the neural network structure illustrated in Fig. 4. The neural network's input layer is a

vector of channel LLR {𝐿1
𝑐ℎ , 𝐿2

𝑐ℎ , … , 𝐿𝑛
𝑐ℎ} having the same length as the number of 𝑉𝑁𝑠 𝑣 in the 𝑇𝑎𝑛𝑛𝑒𝑟 𝑔𝑟𝑎𝑝ℎ,

and it produces the output layer LLR vector {𝐿1
𝑜 , 𝐿2

𝑜 , … , 𝐿𝑛
𝑜 }, also containing the same number of neurons. All

hidden layers share the same size, which is equal to the number of edges in the Tanner graph . Two hidden layers

(sublayers) are allocated for each decoding iteration 𝑡, with each containing one neuron corresponding to each

edge in the Tanner graph. The variable node update (𝑉𝑁 𝑣 → 𝐶𝑁 𝑐) messages in (8) are produced by the odd

hidden layers, while the even layers transmit the check node update (𝐶𝑁 𝑐 → 𝑉𝑁 𝑣) messages in (9). The input

layer connected to all odd hidden layers represents the incorporation of the channel LLR in (8). The weight and

bias tensors are updated using the Adam optimizer, a variant of gradient descent,are: the channel weight 𝑤𝑐ℎ
(𝑡)

, the

check node weight {𝛼} 𝑡=1
𝑇 ,the 𝑉𝑁 edge weights {𝑤𝑖𝑗

𝑣𝑛} along with the optional biases 𝑏𝑣𝑛, 𝑏𝑐𝑛 .

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

580

Figure 3.Diagram of the adaptive neural decoding procedures

Figure 4.The network diagram of the proposed NMS decoder

Collectively, these parameters define the forward pass:

• The (𝑉𝑁 𝑣) update is:

𝐿𝑣→𝑐
(𝑡)

= 𝑤𝑖𝑗
𝑣𝑛 × (𝑤𝑐ℎ

(𝑡)
𝐿𝑣

0 + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑡−1)

𝑐′∈𝒩(𝑣) 𝑐⁄

) ∀𝑖 ∈ 𝑣, 𝑗 ∈ 𝒩(𝑣) (11)

• The (𝐶𝑁 𝑐) update is:

𝐿̂𝑐⟶𝑣
(𝑡)

= 𝛼(𝑡) × (∏ 𝑠𝑔𝑛(𝐿
𝑣′→𝑐

(𝑡)
)

𝑣′∈𝒩(𝑐) 𝑣⁄

) × min
𝑣′∈𝒩(𝑐) 𝑣⁄

|𝐿
𝑣′→𝑐

(𝑡)
| ∀𝑡 ∈ {1,2, … , 𝑇} (12)

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

581

To train all learnable parameter weights 𝑤𝑐ℎ
(𝑡)

, 𝑤𝑖𝑗
𝑣𝑛 , and 𝛼 end-to-end while minimizing a syndrome-aware loss

over a dataset that is randomly generated from synthetic noisy codewords, we feed a collection of samples into

the neural network. After preparing the samples, generate noisy frame outlines as follows:

1- For each SNR value 𝛾 ,draw a batch of 𝐵 random information bits 𝑥 ∈ {0,1}𝐾.

2- Encode via the 𝐻 matrix and modulate (e.g., QPSK).

3- Pass through the channel (AWGN, and Rayleigh fading channel) to obtain received vector 𝑦.

For training, we generate a random received vector 𝑦 of length 𝑁, along with its corresponding channel LLR

vector {𝐿1
𝑐ℎ , 𝐿2

𝑐ℎ , … , 𝐿𝑛
𝑐ℎ}. After computing the channel LLRs in (2), the posteriori LLR (after 𝑇 iterations) is:

𝐿𝑣
𝑜 = 𝑤𝑐ℎ𝐿𝑣

𝑐ℎ + ∑ 𝐿̂
𝑐′⟶𝑣

(𝑇)

𝑐′∈𝒩(𝑣)

 (13)

Consequently, we used loss functions in deep learning-based decoders, including the soft BER (Lian et al.,

2019)and FER (Xiao et al., 2021) loss functions.

• The soft BER:

ℒ𝐵𝐸𝑅 =
1

𝑁
∑ 𝜎(−

𝑁

𝑣=1

𝐿𝑣
𝑜) (14)

Where the sigmoid function 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 and 𝑒 = 2.71828.

• For FER loss function

ℒ𝐹𝐸𝑅 =
1

𝐵
∑

1

2
[1 − 𝑠𝑔𝑛(min

𝑗
𝐿𝑣

𝑜)]

𝐵

𝑏=1

 (15)

𝑏 is the number of frames.

The behavior of the 𝑠𝑔𝑛(∙) function:

• The forward propagation is:

𝑠𝑔𝑛 (min
𝑗

𝐿𝑣
𝑜) =

2

1 + 𝑒
−𝑠𝑔𝑛(min

𝑗
𝐿𝑣

𝑜)
− 1 (16)

• The Gradient backpropagation according to the Adam optimizer is:

- Updating weights:

 𝑤𝑛𝑒𝑤
(𝑡)

⟵ 𝑤𝑜𝑙𝑑
(𝑡)

− 𝛼
𝜕ℒ

𝜕𝑤(𝑡)
 (17)

𝜕ℒ

𝜕𝑤(𝑡) refers to the gradient of the loss function (ℒ𝐵𝐸𝑅 , ℒ𝐹𝐸𝑅) with respect to the weight.

- updating biases:

𝑏𝑛𝑒𝑤
(𝑡)

⟵ 𝑏𝑜𝑙𝑑
(𝑡)

− 𝛼
𝜕ℒ

𝜕𝑏(𝑡)
 (18)

In addition, the BER could vary significantly with a varying number of iterations throughout the training process,

so the SNR must be allocated to different levels during training. Additionally, it is essential to note that both the

trained weights and biases are shared across all lifted versions of the same base graph and distributed across every

possible lifted code generated by the same base code. Algorithm 1 summarizes the suggested training techniques

for the NMS decoder.

Algorithm 1: Training The Neural LDPC Decoder: End-to-End Execution Logic

Inputs:

 𝑯 ∈ {𝟎, 𝟏}𝑴×𝑵: parity-check matrix

𝑳𝒄𝒉
(𝟎)

 [𝟏. . 𝑵]: input LLRs: 𝑳𝒗 = 𝐥𝐨𝐠(𝑷𝒓(𝒚𝒗|𝒙𝒗 = 𝟎) 𝑷𝒓(𝒚𝒗|𝒙𝒗 = 𝟏)⁄)

𝑻: max number of iterations (hidden layers)

𝒘𝒄𝒉: channel scaling weight (scalar)

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

582

𝒘𝒊𝒋
𝒗𝒏: VN‐edge weights for each edge 𝒊 → 𝒋

𝜶[𝟏. . 𝑻]: learned CN‐scaling factors per iteration

Output: 𝒙 [𝟏. . 𝑵] : estimated codeword (0/1) or declare failure

step 1. Initialize all CN→VN messages to zero

for each check node 𝒋 and each neighbor 𝒊 ∈ 𝑴(𝒋):
 𝑴𝒄𝒏 [𝒋 → 𝒊] ← 𝟎

step 2. Iterative Message Passing

for 𝒕 from 1 to 𝑻 do

 # 2.1 VN Update Sublayer: compute variable-to-check messages

 for each variable node 𝒊 and each neighbor 𝒋 ∈ 𝑵(𝒊) do

 𝒔𝒖𝒎_ 𝒊𝒏 ← 𝟎

 for each 𝒌 ∈ 𝑵(𝒊) \ {𝒋} do

 𝒔𝒖𝒎_𝒊𝒏 ← 𝒔𝒖𝒎_𝒊𝒏 + 𝑴𝒄𝒏[𝒌 → 𝒊]
 end for

 # weighted sum of channel LLR and incoming CN messages

 𝑴𝒗𝒏[𝒊 → 𝒋] ← 𝒘𝒊𝒋
𝒗𝒏 ∗ (𝒘𝒄𝒉 ∗ 𝑳𝒄𝒉

(𝟎)
 + 𝒔𝒖𝒎_𝒊𝒏)

 end for

 # 2.2 CN Update Sublayer: compute check-to-variable messages

 for each check node 𝒋 and each neighbor 𝒊 ∈ 𝑴(𝒋) do

 # product of signs

 𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅 ← 𝟏

 for each 𝒎 ∈ 𝑴(𝒋) \ {𝒊} do

 𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅 ← 𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅 ∗ 𝒔𝒊𝒈𝒏(𝑴_𝒗𝒏[𝒎 → 𝒋])

 end for

 # minimum magnitude

 𝒎𝒊𝒏𝒗𝒂𝒍 ← +∞

 for each 𝒎 ∈ 𝑴(𝒋) \ {𝒊} do

 if 𝒂𝒃𝒔(𝑴𝒗𝒏[𝒎 → 𝒋]) < 𝒎𝒊𝒏𝒗𝒂𝒍 then

 𝒎𝒊𝒏_𝒗𝒂𝒍 ← 𝒂𝒃𝒔(𝑴𝒗𝒏[𝒎 → 𝒋])

 end if

 end for

 # 𝒍𝒆𝒂𝒓𝒏𝒆𝒅 𝑪𝑵‐ 𝒔𝒄𝒂𝒍𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓𝒔 𝒑𝒆𝒓 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒎𝒊𝒏 − 𝒔𝒖𝒎 𝒖𝒑𝒅𝒂𝒕𝒆

 𝑴𝒄𝒏[𝒋 → 𝒊] ← 𝜶[𝒕] ∗ 𝒔𝒊𝒈𝒏𝒑𝒓𝒐𝒅 ∗ 𝒎𝒊𝒏𝒗𝒂𝒍

 end for

end for

step 3. A-Posteriori LLR Computation

for each variable node 𝒊 do

 𝑳𝒂𝒑𝒑[𝒊] ← 𝒘𝒄𝒉 ∗ 𝑳𝒄𝒉
(𝟎)

[𝒊]

 for each 𝒋 ∈ 𝑵(𝒊) do

 𝑳𝒂𝒑𝒑[𝒊] ← 𝑳𝒂𝒑𝒑[𝒊] + 𝑴𝒄𝒏[𝒋 → 𝒊]

 end for

end for

end for

Feed 𝒚 into the NMS decoder corresponding

to the base code 𝑪𝒋 after 𝒊 − 𝒕𝒉 iteration for the training

values of SNR and obtain output 𝒔𝒗;

Compute loss function based on (14), (15);

Update 𝜶(𝑲)using gradient descent algorithm;

Step4. Decision & Syndrome Check

for 𝒊 from 𝟏 to 𝑵 do

 𝒙 [𝒊] ← (𝟏 − 𝒔𝒊𝒈𝒏(𝒔𝒗)) / 𝟐 # maps positive 𝑳𝑳𝑹 → 𝟎, negative → 𝟏

end for

if 𝑯 · 𝒙̂ᵀ == 𝟎 then

 return 𝒙̂ # decoding successful

else

 return 𝒙 ̂ # or declare decoding failure

end if

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

583

Boosting Learning with Uncorrected Vectors

Traditional end-to-end training strategies may perform poorly when noisy frames reach the correctable thresholds.

We improve the decoding process by reutilizing the incorrect frames. The decoding process consists of two main

stages: the base stage covers iteration{0,1, … , 𝑇1} where the 𝑉𝑁 𝑣 update multiplies by the learnable 𝑤𝑖𝑗
𝑣𝑛, and the

post stage covers iteration {𝑇1, 𝑇1 + 1, … , 𝑇̅} , applying MS corrections using 𝛼. The post-decoder, built on

boosting-learning theory, aims to mitigate the base-decoder's faults by learning from its errors. The decoding

process is theoretically divided into two stages, but in practice, it performs as one decoder using learning weights

using 𝛼 (base) and 𝑤𝑖𝑗
𝑣𝑛 (boosting). There are four main steps in our boosting training, as follows:

Step 1. Collect uncorrected samples: Run the pretrained NMS decoder on a large test set of noisy codewords at

low SNR, and collect frames where decoding fails (non-zero syndrome). Save their intermediate a posteriori LLR

vectors for each frame, which serve as the input LLRs 𝐿𝑖
(0)

 and uncorrected vectors (base-decoder output) 𝐿𝑢𝑛
(𝑇)

.

Step 2: Secondary training set: Residual target computation, in which we define the “ideal” (noiseless) reference

LLRs vector as:

𝐿𝑖
∗ = 𝑙𝑜𝑔

𝑃𝑟(𝑦𝑖|𝑥𝑖 = 0)

𝑃𝑟(𝑦𝑖|𝑥𝑖 = 1)
 (𝑛𝑜 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑛𝑜𝑖𝑠𝑒) (19)

The residual learning corrections as:

∆𝐿 = 𝐿∗ − 𝐿𝑢𝑛
(𝑇)

 ∈ ℝ𝑁 (20)

Where ℝ is 𝑑-dimensional input space of codeword 𝑁.

Step 3. Boosting network stage: Repeat the same message-passing structure (NMS framework) with the learning

rate and while feeding 𝐿𝑢𝑛
(𝑇)

 and the original 𝐿0as (boost) network 𝑓Θ, whose goal is to predict the output ∆𝐿 ̂ from

the uncorrected frames 𝐿𝑢𝑛
(𝑇)

 and optionally 𝐿0.

• Boost network prediction:

∆𝐿 ̂ = 𝑓Θ𝑏𝑜𝑜𝑠𝑡
(𝐿𝑢𝑛

(𝑇)
, 𝐿0) ∈ ℝ𝑁

𝑓Θ(⋅) represents the forward function of the NMS-LDPC decoder, where Θ encompasses all the learnable

parameters: {𝑤𝑐ℎ ∈ ℝ, {𝑤𝑖𝑗
𝑣𝑛}

(𝑖,𝑗)𝜖ℰ
, {𝛼(𝑡)}

𝑡=1

𝑇
} .This function serves as a mathematical mapping from input to

output, taking noisy observations, processing all 𝑉𝑁 𝑣 and 𝐶𝑁 𝑐 sublayers (with their per-edge and per-iteration

weights), and producing updated beliefs.

• Boosting loss: Train 𝑓Θ𝑏𝑜𝑜𝑠𝑡
 by minimizing the mean squared error (MSE) over a batch of size 𝐵 for each

of the 𝑏 uncorrected frames, as (Cestari et al., 2024):

•

ℒ𝑏𝑜𝑜𝑠𝑡 =
1

𝐵𝑁
∑‖∆𝐿(𝑏) − ∆𝐿 ̂ (𝑏)‖

2

2
𝐵

𝑏=1

=
1

𝐵𝑁
∑ ∑(∆𝐿(𝑏) − ∆𝐿 ̂ (𝑏))

2
𝑁

𝑖=1

𝐵

𝑏=1

Step 4. Corrected LLR and the decision: After training, there are two stages of inference (base decoder and boost

correction) to correct each uncorrected output:

• Base decoder: 𝐿𝑢𝑛
(𝑇)

= 𝑓Θ𝑏𝑎𝑠𝑒
(𝐿0)

• Boost correction: ∆𝐿 ̂ = 𝑓Θ𝑏𝑜𝑜𝑠𝑡
(𝐿𝑢𝑛

(𝑇)
, 𝐿0), 𝐿𝑐𝑜𝑟𝑟

(𝑇)
= 𝐿𝑢𝑛

(𝑇)
+ ∆𝐿 ̂

This two-stage technique effectively eliminates "stuck" errors, resulting in an additional 0.1– 0.2 dB enhancement

in waterfall performance. To map that belief into the final hard decision (0/1) estimate 𝑥̂:

• Hard decision: 𝒙̂ 𝑖 =
1−𝑠𝑔𝑛(𝐿𝑐𝑜𝑟𝑟

(𝑇)
)

2

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

584

This concludes the mathematical explanation of the boost-learning process by Syndrome Check:

𝐻 · 𝑥̂ᵀ = 0 (𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦)

Simulation Results

Proposed Training Scheme

For the BG-LDPC codes BG1 and BG2, with 𝑖𝐿𝑆 = 0 and 𝑍𝑐 = 8, we have selected decoding for evaluation

purposes using the adaptive WMS-NMS decoder in an end-to-end training process. We employ a supervised,

gradient-based approach that involves the message update rules in (11) and (12), which jointly optimize all

learnable parameters (channel scaling 𝛼, 𝑤𝑐ℎ
(𝑡)

, and 𝑤𝑖𝑗
𝑣𝑛). The weights update method is iteration-by-iteration. The

general workflow is shown in Algorithm 1 and Fig. 4.

Performance Comparison

We evaluate the proposed adaptive neural decoder (base + base-post) under AWGN and Rayleigh channel

scenarios, BG configurations, lifting factors, and maximum number of decoding iterations. We collected 30000

vectors and 10000 for training, with 5000 for testing and 5000 for validation. The maximum number of iterations

was also set to 20 for all codes. At each SNR point, we collect at least 100 frame errors to measure the FER

performance. The scenario of transmitting coded QPSK symbols under varying channel conditions is assumed.

BG1 vs. BG2: AWGN channel

The BER and FER for BG1 and BG2 over an AWGN channel were compared using different values of SNR

(2 - 5) dB, as illustrated in Fig.5. In the waterfall region, BG1 is better than BG2 by about 1 dB, with BG1

achieving a BER of approximately 1.33 × 10⁻⁷ at 4 dB, while BG2 requires 5 dB to reach a comparable BER of

approximately 1.26 × 10⁻⁷. Additionally, regarding the error floor, both graphs indicate negligible error floors

down to BER ≈ 10⁻⁷ and FER ≈ 10⁻⁶, demonstrating the effectiveness of the two-stage neural boosting decoder

in pushing error rates into the ultra-reliable scheme(< 10⁻⁷).

Figure 5.Performance of BG-LDPC over AWGN channel for BER and FER

BG1 vs. BG2: Rayleigh Flat-Fading Channel

Under Rayleigh fading, Fig. 6 shows both codes start with especially high error rates at 2 dB, indicating significant

deep-fade effects. However, BG1's structure utilizes diversity more effectively when the SNR exceeds

approximately 3 dB, leading to a much stronger waterfall effect. BG1 consistently achieves lower BER and FER

across all SNRs, demonstrating more reliable frame decoding. BG1 outperforms BG2 with an approximate 2 dB

improvement in BER. Additionally, BG1 enhances frame reliability compared to BG2. Below 5 dB, BG1

maintains noteworthy performance in its error floor, which decreases significantly for both BER and FER,

indicating that BG1 offers better resistance to strong fades and a sharper descent approach into the ultra-reliable

system under Rayleigh fading.

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

585

Investigating the Impact of Code Rate

We examine the effect of code rate on code performance, as illustrated in Fig. 7, which shows the (a) BER and

(b) FER curves of BG2 for three LDPC codes (𝑘 = 10, 𝑍𝐶 = 8) with rates R = 0.19, 0.5, and 0.75 for the AWGN

channel. The LDPC codes and their rates over the Rayleigh fading channel are shown in Fig. 8.

Figure 6. Performance of BG-LDPC over Rayleigh flat-fading channel for BER and FER

Figure 7. Comparison of code rates for AWGN channel for BER and FER

Error correction is improved by more redundancy (lower R), meaning the error rate curve shifts to the right for

higher SNR. For the highest rate value (BG2, AWGN at R=0.75), we achieve BER = 3.03e-05 and FER = 7.58e-

04 at 7 dB, while (BG2, Rayleigh) requires SNR = 10 to reach BER = 4.87e-04 and FER = 2.20e-02. The R=0.19

code (416, 80) outperforms R=0.5 (160, 80) by up to 1.1dB and R=0.75 (104, 80) by up to 3.34 dB in the waterfall

at BER= 10−4 for AWGN channel.

Figure 8. Comparison of code rates for Rayleigh fading channel for BER and FER

Block Length Effect

We are increasing the block length 𝑁 by varying the lifting factor 𝑍𝐶 according to Table 2 for a fixed BG2 (𝑅 =
0.19, 𝑖𝐿𝑆 = 0, 𝑘 = 10) in Fig. 9. The values were chosen at index 𝑖𝐿𝑆 = 0

(𝑍𝐶 = 2,4,8,16,32), which produce (𝑁 = 104,208,416,832,1664), respectively. As 𝑍𝐶 grows, performance

improves significantly as 𝑁 increases and cycle distributions become better. For BG2, BER falls from

3.94 × 10⁻⁴ (𝑍𝐶 = 2) to 1.50 × 10⁻⁸ (𝑍𝐶 = 32), while FER decreases from 2.08 × 10⁻³ (𝑍𝐶 = 2) to

8.00 × 10⁻⁷ (𝑍𝐶 = 32) at SNR= 5 dB under the AWGN channel. For Rayleigh Flat-Fading channel

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

586

performance the selected values were (𝑍𝐶 = 2,4,8,16), yielding (𝑁 = 104,208,416,832), at the same index 𝑖𝐿𝑆 =
0, as shown in Fig. 10.

Figure 9. Comparison of lifting factor for AWGN channel for BER and FER

Figure 10. Comparison of lifting factor for Rayleigh fading channel for BER and FER

Channel-Scaling Coefficients

The impact of α on LDPC code performance is illustrated in Fig. with selected values (0.5, 0.75, 0.8, 0.9, and 1)

under BG2, AWGN with R = 0.19, , 𝑍𝐶 = 8. A higher value of the scalar CN weight α accelerates convergence

and produces reduced error rates, BER/FER, at low and moderate SNRs. The optimal performance occurs at

α = 1, achieving BER=5.19e-07 and FER1.23e-05 at SNR=4.5 dB. Beyond approximately 3.5 dB, all

configurations essentially reach the same error floor, so tuning α is most helpful when the channel is relatively

noisy.

Figure 11. Comparison of check node for AWGN channel for BER and FER

Selection Criteria and Computational Overhead

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

587

Selection of uncorrected frames for which the syndrome check not equal to zero,as:

𝑠 = 𝐻 · 𝑥̂ᵀ ≠ 0

After maximum number of decoding iterations T=20 at SNR ≤ 2 dB is collected as “hard” samples for boosting.

Fig. 12 displays the distribution of uncorrected frames over iterations. The number of uncorrected frames dropped

from 5000 to 289 during the base decoder stage. At Base + Post, it was reduced to 2 frames, resulting in an

improvement of 99%. The computational cost on an NVIDIA RTX 3090 GPU, the boosting stage adds

approximately 15 % to the end-to-end training time

Figure 12. Distribution of uncorrected frames over iterations

Decoder Comparison

To explain the effectiveness of the proposed hybrid learning methodology, we compare decoding performance,

BER, and FER using the AWGN channel for four cases: the MS, WMS, NMS Base decoder, and NMS Base +

Post decoder, as shown in Fig. 13. The WMS decoder uses w(int-cn)=1 and w(int-ch)=1. While the WMS decoder

exhibits better waterfall performance than the baseline MS decoder by 0.4 dB at 0.00001 BER, it still shows a

significant error floor. The NMS Base decoder shows excellent performance in the waterfall region, similar to the

performance curve of the WMS decoder, with a BER of 4.33e-06 and FER of 1.00e-04 at 4.5 dB. To improve both

the waterfall region and error floor performance, the NMS Base + Post decoder, at SNR = 5 dB, achieves a BER

of 1.42e-07 and FER of 3.18e-06, demonstrating superior performance with a 0.8 dB gain compared to the MS

decoder.

Figure 13. Comparison of decoder algorithm performance for BER and FER

Conclusion

In this study, the performance of the LDPC base-graph is improved in this work to meet to the requirements for

6G applications. We introduce a flexible and integrated two-stage adaptive neural decoding technique that

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

588

incorporates a weighted Min-Sum (WMS) algorithm and syndrome-aware learning, utilizing parity-check

feedback in real-time. In the first step, the Base decoder learns parameters including channel-scaling coefficients

𝛼 end-to-end, per-iteration check-node weights𝑤𝑐ℎ
(𝑡)

, and, and per-edge variable-node parameters 𝑤𝑖𝑗
𝑣𝑛 , to jointly

minimize loss functions, specifically a soft BER/FER. The second step, Base+Post, follows the same workflow

and retrains the decoder using uncorrected frames to fine-tune residual correction weights, leading to a 0.83 dB

waterfall improvement compared to traditional MS decoding at a 0.00001 BER value. The decoder optimizes its

message-passing parameters based on error patterns and channel conditions. Various code rates (0.19 to 0.75) and

lifting factors (Z = 2 to 32) were tested with different SNR values at a maximum of 20 iterations using QPSK

schemes, along with comprehensive simulations that extend across AWGN and Rayleigh channels, demonstrating

that BG1 outperforms BG2 in waterfalls and error floors. The adaptive WMS-NMS decoder offers an excellent

solution for highly reliable, low-latency 6G scenarios, achieving BP-level accuracy with flexible channel

adaptation and limited complexity.

Recommendations

According to the findings of our neural MS, this study offers the following recommendations:

1. Adaptation of dynamic scaling parameters: Adopt per-iteration learnable parameter check-node scaling

factors (α) instead of a fixed value, while ensuring parameter sharing across iterations to reduce model

complexity for the neural network.

2. Integration of hardware and real-time analysis: Evaluate real-time throughput, delay, and power usage

by prototyping the proposed WMS decoder on FPGA or ASIC configurations to identify trade-offs

between hardware complexity (latency, area, power) and decoding accuracy (error performance).

3. Modulation systems and models for wider networks: To assess efficiency in more challenging and

practical wireless scenarios, examine the decoder's adaptability across higher-order modulations (16-

QAM, 64-QAM) and various fading patterns (such as Nakagami-m and Rician).

Scientific Ethics Declaration

* The authors declare that the scientific, ethical, and legal responsibility of this article published in EPSTEM

journal belongs to the authors.

Conflict of Interest

* The authors declare no conflict of interest.

Funding

* This work is unfunded.

Acknowledgements or Notes

* This article was presented as an oral presentation at the International Conference on Engineering and Advanced

Technology (ICEAT) held in Selangor, Malaysia on July 23-24, 2025.

References

3GPP. (2020). 5G; NR; Multiplexing and channel coding Release 16. TS 38.212 Version 16.2.0. Retrieved from

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

Cestari, R. G., Maroni, G., Cannelli, L., Piga, D., & Formentin, S. (2024). Split-boost neural networks. IFAC-

PapersOnLine, 58(15), 241–246.

Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. P. C., & Hu, X. Y. (2005). Reduced-complexity decoding

of LDPC codes. IEEE Transactions on Communications, 53(8), 1288–1299.

Chung, S. Y., David Forney, G., Richardson, T. J., & Urbanke, R. (2001). On the design of low-density parity-

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

International Conference on Engineering and Advanced Technology (ICEAT), July 23-24, 2025, Selangor, Malaysia

589

check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters, 5(2), 58–60.

Dai, J., Tan, K., Si, Z., Niu, K., Chen, M., Vincent Poor, H., & Cui, S. (2021). Learning to decode protograph

LDPC codes. IEEE Journal on Selected Areas in Communications, 39(7), 1983–1999.

Fossorier, M. P. C. (2001). Iterative reliability-based decoding of low-density parity check codes. IEEE Journal

on Selected Areas in Communications, 19(5), 908–917.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on

Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–15.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2002). Factor graphs and the sum-product algorithm. IEEE

Transactions on İnformation Theory, 47(2), 498-519.Kumar, N., Kedia, D., & Purohit, G. (2023). A

review of channel coding schemes in the 5G standard. Telecommunication Systems, 83(4), 423–448.

Kwak, H.-Y., Yun, D.-Y., Kim, Y., Kim, S.-H., & No, J.-S. (2024). Boosted neural decoders: Achieving extreme

reliability of LDPC codes for 6G networks. arXiv 2405.13413

Li, G., & Yu, X. (2023). The impact when neural min-sum variant meets ordered statistics decoding of LDPC

codes. arXiv preprint arXiv:2310.07129.

Lian, M., Carpi, F., Hager, C., & Pfister, H. D. (2019, July). Learned belief-propagation decoding with simple

scaling and SNR adaptation. IEEE International Symposium on Information Theory - Proceedings, 161–

165.

Na, H., Park, H., Kwak, H. Y., & Ahn, S. K. (2025). Learning strategies for neural min-sum decoding of LDPC

codes. ICT Express, 11(1), 161–166.

Nachmani, E., Be’Ery, Y., & Burshtein, D. (2017). Learning to decode linear codes using deep learning. 54th

Annual Allerton Conference on Communication, Control, and Computing, Allerton 2016, 341–346.

Nguyen, T. T. B., Tan, T. N., & Lee, H. (2019). Efficient QC-LDPC encoder for 5G new radio. Electronics, 8(6),

668.

Petrović, V. L., El Mezeni, D. M., & Radošević, A. (2021). Flexible 5G new radio LDPC encoder optimized for

high hardware usage efficiency. Electronics, 10(9), 1106.

Richardson, T., & Kudekar, S. (2018). Design of low-density parity check codes for 5G new radio. IEEE

Communications Magazine, 56(3), 28–34.

Rowshan, M., Qiu, M., Xie, Y., Gu, X., & Yuan, J. (2024, February). Channel coding toward 6G: Technical

overview and outlook. IEEE Open Journal of the Communications Society, 5, 2585–2685.

Sun, K., & Jiang, M. (2018). A hybrid decoding algorithm for low-rate LDPC codes in 5G. 2018 10th International

Conference on Wireless Communications and Signal Processing (WCSP), 1–5.

Tanner, R. M. (1981). A recursive approach to low complexity codes. IEEE Transactions on Information Theory,

27(5), 533–547.

TSGR. (2020). TS 138 212 - V16.2.0 - 5G; NR; Multiplexing and channel coding (3GPP TS 38.212 version 16.2.0

Release 16). Retrieved from https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

Wu, X., Song, Y., Jiang, M., & Zhao, C. (2010). Adaptive-normalized/offset min-sum algorithm. IEEE

Communications Letters, 14(7), 667–669.

Xiao, X., Raveendran, N., Vasic, B., Lin, S., & Tandon, R. (2021). FAID diversity via neural networks. 2021 11th

International Symposium on Topics in Coding (ISTC), (pp. 1-5). IEEE.

Author(s) Information
Noor Salih Mohammed
Al-Furat Al-Al-Awsat Technical University, Najaf

Technical College, Communications Engineering

Department, Al-Najaf, Iraq.

e-mail: noor.saleh@student.atu.edu.iq

Ahmed Ghanim Wadday
Al-Furat Al-Al-Awsat Technical University, Najaf

Technical College, Communications Engineering

Department, Al-Najaf, Iraq.

Bashar Jabbar Hamza

Al-Furat Al-Al-Awsat Technical University, Najaf

Technical College, Communications Engineering

Department, Al-Najaf, Iraq.

To cite this article:

Mohammed, N.S., Wadday, A.G., & Hamza, B.J. (2025). Learning about syndrome awareness and WMS

algorithm for adaptive neural decoding for 6G LDPC base graph enhancement. The Eurasia Proceedings of

Science, Technology, Engineering and Mathematics (EPSTEM), 37, 574–589.

http://arxiv.org/abs/2405.13413
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
mailto:noor.saleh@student.atu.edu.iq

