Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 7 , 329 - 332, 24.11.2019

Öz

Kaynakça

  • D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, (2016). “Room temperature lithium superionic conductivity in high entropy oxides”, J. Mater. Chem. A. 4, 9536–9541. Chen, H., Qiu, N., Sun, S., Wang, Y., Cui, Y., Yang, Z., (2018). “A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance”, J. Alloys Compd., 777, 767-774. W. Hong, F. Chen, Q. Shen, Y.H. Han, W.G. Fahrenholtz, L. Zhang, (2019). “Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics”, J. Am. Ceram. Soc. 102,2228–2237. Lu, Y., Yu, Li., Lou, X.W. (2018). “Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries”, Chem., 4, 972-996. Meister, P., Jia, H., Li, J., Kloepsch, R., Winter, M., Placke, T. (2016). “Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency”, Chem. Mater., 28, 7203-7217. Puthusseri, D., Wahid, M., Ogale, S. (2018). “Conversion-type Anode Materials for Alkali-Ion Batteries: State of the Art and Possible Research Directions”, ACS Omega, 3, 4591-4601. Rost, C.M., Sachet, E.,. Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S.,Maria, J.P. (2015). “Entropy-stabilized oxides”, Nat. Commun. 6, 1-8. Sarkar, A., Wang, Q., Kübel, C., Wang, D., Talasila, G., Brezesinski, T., Hahn, H., de Biasi, L., Velasco, L., Bhattacharya, S.S., Breitung, B. (2018). “High entropy oxides for reversible energy storage”, Nat. Commun. 9, 1-9.

Synthesis and Electrochemical Performance of the (Mg0.2Co0.2Ni0.2Zn0.2Li0.2) O High Entropy Oxide as Anode Material for Li-ion Batteries

Yıl 2019, Cilt: 7 , 329 - 332, 24.11.2019

Öz

Presently intercalation type graphite anode electrodes were being used mainly in the commercial Li-ion batteries. Graphite electrodes, however, have reached their theoretical capacity values ( 372 mAhg-1). Therefore large amount of studies on the synthesis of the novel electrode types were conducted all over the world. One of the novel electrode groups is conversion type electrode. The high entropy design approach is especially utilized in this multi-component oxide electrode synthesis. In this study a new high entropy oxide (Mg0.2Co0.2Ni0.2Zn0.2Li0.2)O was synthesized for the first time in the literature by mixing and grinding of the oxide powders, followed by solid-state reaction at 1000 ºC. The microstructure of the material was characterized using XRD and FESEM-EDX methods, showing single-phase rocksalt structure. The electrochemical performances of the synthesized (Mg0.2Co0.2Ni0.2Zn0.2Li0.2)O as anode material for Li-ion batteries was determined using LIR2016 coin cell. The results showed that (Mg0.2Co0.2Ni0.2Zn0.2Li0.2)O, which has good potential to be used as anode in lithium-ion batteries, had the highest capacity value in 1.0 M LiTFSI-DME electrolyte (1725 mAhg-1).

Kaynakça

  • D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, (2016). “Room temperature lithium superionic conductivity in high entropy oxides”, J. Mater. Chem. A. 4, 9536–9541. Chen, H., Qiu, N., Sun, S., Wang, Y., Cui, Y., Yang, Z., (2018). “A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance”, J. Alloys Compd., 777, 767-774. W. Hong, F. Chen, Q. Shen, Y.H. Han, W.G. Fahrenholtz, L. Zhang, (2019). “Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics”, J. Am. Ceram. Soc. 102,2228–2237. Lu, Y., Yu, Li., Lou, X.W. (2018). “Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries”, Chem., 4, 972-996. Meister, P., Jia, H., Li, J., Kloepsch, R., Winter, M., Placke, T. (2016). “Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency”, Chem. Mater., 28, 7203-7217. Puthusseri, D., Wahid, M., Ogale, S. (2018). “Conversion-type Anode Materials for Alkali-Ion Batteries: State of the Art and Possible Research Directions”, ACS Omega, 3, 4591-4601. Rost, C.M., Sachet, E.,. Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S.,Maria, J.P. (2015). “Entropy-stabilized oxides”, Nat. Commun. 6, 1-8. Sarkar, A., Wang, Q., Kübel, C., Wang, D., Talasila, G., Brezesinski, T., Hahn, H., de Biasi, L., Velasco, L., Bhattacharya, S.S., Breitung, B. (2018). “High entropy oxides for reversible energy storage”, Nat. Commun. 9, 1-9.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Anık

Ersu Lokcu

Yayımlanma Tarihi 24 Kasım 2019
Yayımlandığı Sayı Yıl 2019Cilt: 7

Kaynak Göster

APA Anık, M., & Lokcu, E. (2019). Synthesis and Electrochemical Performance of the (Mg0.2Co0.2Ni0.2Zn0.2Li0.2) O High Entropy Oxide as Anode Material for Li-ion Batteries. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 7, 329-332.