Konferans Bildirisi
BibTex RIS Kaynak Göster

Investigation of Conformation, Vibration and Electronic Properties of 2- Methoxythiophene Molecule by Theoretical Methods

Yıl 2021, Cilt: 15 , 28 - 34, 31.12.2021
https://doi.org/10.55549/epstem.1052149

Öz

In this study, the structural parameters, vibrational frequency, the electronic energy, the dipole moment, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy, the polarizability, hyperpolarizability and the potential energy curves (PEC) of 2-methoxythiophene molecule were calculated at Hartree-Fock (HF) and Density Functional Theory (DFT) with B3LYP (Becke 3 Parameter Lee-Yang-Parr) model using the 6-311++(d,p) basis set in gas phase. The potential energy curves of the molecule were performed as a function the θ[C3-C2-O-C6] torsion angle varying from 0-360º at 10º intervals. The dipole moment value of the molecule was calculated as 1.99 Debye by the DFT/B3LYP/6-311++G(d,p) method and as 2.24 Debye by the HF/6-311++G(d,p) method, respectively. The obtained vibrational wave numbers were scaled with appropriate scale factors and the assigning of these vibrational wavenumbers was made according to the potential energy distribution (PED) using the VEDA 4f program. Also, by using HOMO-LUMO energies, energy gap values, ionization energy, electron affinity, chemical potential, electronegativity, hardness and softness indices were obtained. The approximate geometry of the molecules in three dimensions was drawn in the GaussView 5.0 molecular imaging program, and all theoretical calculations were used with the Gaussian 09W package.

Kaynakça

  • Bao, Z., & Lovinger, A. J. (1999). Soluble regioregular polythiophene derivatives as semiconducting materials for field-effect transistors. Chemistry of Materials, 11(9), 2607-2612.
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 38(6), 3098.
  • Becke, A. D., 1993. Density-functional thermochemistry .3. the role of exact exchange. The Journal of Chemical Physicsi 98(7), 5648-5652.
  • Blake, A. J., Clark, B. A., Gierens, H., Gould, R. O., Hunter, G. A., McNab, H., ... & Sommerville, C. C. (1999). Intramolecular and intermolecular geometry of thiophenes with oxygen-containing substituents. Acta Crystallographica Section B: Structural Science, 55(6), 963-974.
  • Briseno, A. L., Holcombe, T. W., Boukai, A. I., Garnett, E. C., Shelton, S. W., Fréchet, J. J., & Yang, P. (2010). Oligo-and polythiophene/ZnO hybrid nanowire solar cells. Nano Letters, 10(1), 334-340.
  • Dennington, R., Keith T., Millam, J. (2009). Semichem, In GaussView (Version 5). Shawnee Mission.
  • Jamroz, M. H. (2004) Vibrational Energy Distribution Analysis. VEDA Computer Program.
  • Kim, J., Park, S. Y., Han, G., Chae, S., Song, S., Shim, J. Y., ... & Suh, H. (2016). Conjugated polymers containing 6-(2-thienyl)-4H-thieno [3, 2-b] indole (TTI) and isoindigo for organic photovoltaics. Polymer, 95, 36-44.
  • Kim, D. M., Cho, S. J., Cho, C. H., Kim, K. B., Kim, M. Y., & Shim, Y. B. (2016). Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide. Biosensors and Bioelectronics, 79, 165-172.
  • Kline, R. J., McGehee, M. D., & Toney, M. F. (2006). Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials, 5(3), 222-228.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.
  • Li, X. G., Li, J., Meng, Q. K., & Huang, M. R. (2009). Interfacial synthesis and widely controllable conductivity of polythiophene microparticles. The Journal of Physical Chemistry B, 113(29), 9718-9727.
  • Lv, X., Yan, S., Dai, Y., Ouyang, M., Yang, Y., Yu, P., & Zhang, C. (2015). Ion diffusion and electrochromic performance of poly (4, 4′, 4 ″-tris [4-(2-bithienyl) phenyl] amine) based on ionic liquid as electrolyte. Electrochimica Acta, 186, 85-94.
  • Méhes, G., Pan, C., Bencheikh, F., Zhao, L., Sugiyasu, K., Takeuchi, M., ... & Adachi, C. (2016). Enhanced electroluminescence from a thiophene-based insulated molecular wire. ACS Macro Letters, 5(7), 781-785.
  • Nejati, S., & Lau, K. K. (2011). Chemical vapor deposition synthesis of tunable unsubstituted polythiophene. Langmuir, 27(24), 15223-15229.
  • Schon, J.H., Dodabalapur, A., Bao, Z., Kloc, C.H., Schenker, O., Batlogg, B. (2001). Gate-induced superconductivity in a solution-processed organic polymer film. Nature. 410,189–92.
  • Shao, M., Keum, J., Chen, J., He, Y., Chen, W., Browning, J. F., ... & Xiao, K. (2014). The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nature communications, 5(1), 1-11.
  • Shiraki, T., Dawn, A., Tsuchiya, Y., & Shinkai, S. (2010). Thermo-and solvent-responsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene. Journal of the American Chemical Society, 132(39), 13928-13935.
  • Yan, W., Jiang, D., Liu, Q., Kang, Q., & Zhou, F. (2019). Solar cells constructed with polythiophene thin films grown along tethered thiophene–dye conjugates via photoelectrochemical polymerization. ACS Applied Materials & İnterfaces, 11(20), 18755-18762.
  • Yang, F., Li, C., Zhang, J., Feng, G., Wei, Z., & Li, W. (2016). Methylated conjugated polymers based on diketopyrrolopyrrole and dithienothiophene for high performance field-effect transistors. Organic Electronics, 37, 366-370.
  • Yao, Z., Hu, X., Huang, B., Zhang, L., Liu, L., Zhao, Y., & Wu, H. C. (2013). Halochromism of a polythiophene derivative induced by conformational changes and its sensing application of carbon dioxide. ACS applied materials & interfaces, 5(12), 5783-5787.
Yıl 2021, Cilt: 15 , 28 - 34, 31.12.2021
https://doi.org/10.55549/epstem.1052149

Öz

Kaynakça

  • Bao, Z., & Lovinger, A. J. (1999). Soluble regioregular polythiophene derivatives as semiconducting materials for field-effect transistors. Chemistry of Materials, 11(9), 2607-2612.
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 38(6), 3098.
  • Becke, A. D., 1993. Density-functional thermochemistry .3. the role of exact exchange. The Journal of Chemical Physicsi 98(7), 5648-5652.
  • Blake, A. J., Clark, B. A., Gierens, H., Gould, R. O., Hunter, G. A., McNab, H., ... & Sommerville, C. C. (1999). Intramolecular and intermolecular geometry of thiophenes with oxygen-containing substituents. Acta Crystallographica Section B: Structural Science, 55(6), 963-974.
  • Briseno, A. L., Holcombe, T. W., Boukai, A. I., Garnett, E. C., Shelton, S. W., Fréchet, J. J., & Yang, P. (2010). Oligo-and polythiophene/ZnO hybrid nanowire solar cells. Nano Letters, 10(1), 334-340.
  • Dennington, R., Keith T., Millam, J. (2009). Semichem, In GaussView (Version 5). Shawnee Mission.
  • Jamroz, M. H. (2004) Vibrational Energy Distribution Analysis. VEDA Computer Program.
  • Kim, J., Park, S. Y., Han, G., Chae, S., Song, S., Shim, J. Y., ... & Suh, H. (2016). Conjugated polymers containing 6-(2-thienyl)-4H-thieno [3, 2-b] indole (TTI) and isoindigo for organic photovoltaics. Polymer, 95, 36-44.
  • Kim, D. M., Cho, S. J., Cho, C. H., Kim, K. B., Kim, M. Y., & Shim, Y. B. (2016). Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide. Biosensors and Bioelectronics, 79, 165-172.
  • Kline, R. J., McGehee, M. D., & Toney, M. F. (2006). Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials, 5(3), 222-228.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.
  • Li, X. G., Li, J., Meng, Q. K., & Huang, M. R. (2009). Interfacial synthesis and widely controllable conductivity of polythiophene microparticles. The Journal of Physical Chemistry B, 113(29), 9718-9727.
  • Lv, X., Yan, S., Dai, Y., Ouyang, M., Yang, Y., Yu, P., & Zhang, C. (2015). Ion diffusion and electrochromic performance of poly (4, 4′, 4 ″-tris [4-(2-bithienyl) phenyl] amine) based on ionic liquid as electrolyte. Electrochimica Acta, 186, 85-94.
  • Méhes, G., Pan, C., Bencheikh, F., Zhao, L., Sugiyasu, K., Takeuchi, M., ... & Adachi, C. (2016). Enhanced electroluminescence from a thiophene-based insulated molecular wire. ACS Macro Letters, 5(7), 781-785.
  • Nejati, S., & Lau, K. K. (2011). Chemical vapor deposition synthesis of tunable unsubstituted polythiophene. Langmuir, 27(24), 15223-15229.
  • Schon, J.H., Dodabalapur, A., Bao, Z., Kloc, C.H., Schenker, O., Batlogg, B. (2001). Gate-induced superconductivity in a solution-processed organic polymer film. Nature. 410,189–92.
  • Shao, M., Keum, J., Chen, J., He, Y., Chen, W., Browning, J. F., ... & Xiao, K. (2014). The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nature communications, 5(1), 1-11.
  • Shiraki, T., Dawn, A., Tsuchiya, Y., & Shinkai, S. (2010). Thermo-and solvent-responsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene. Journal of the American Chemical Society, 132(39), 13928-13935.
  • Yan, W., Jiang, D., Liu, Q., Kang, Q., & Zhou, F. (2019). Solar cells constructed with polythiophene thin films grown along tethered thiophene–dye conjugates via photoelectrochemical polymerization. ACS Applied Materials & İnterfaces, 11(20), 18755-18762.
  • Yang, F., Li, C., Zhang, J., Feng, G., Wei, Z., & Li, W. (2016). Methylated conjugated polymers based on diketopyrrolopyrrole and dithienothiophene for high performance field-effect transistors. Organic Electronics, 37, 366-370.
  • Yao, Z., Hu, X., Huang, B., Zhang, L., Liu, L., Zhao, Y., & Wu, H. C. (2013). Halochromism of a polythiophene derivative induced by conformational changes and its sensing application of carbon dioxide. ACS applied materials & interfaces, 5(12), 5783-5787.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Guventurk Ugurlu

Erken Görünüm Tarihi 1 Ocak 2022
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021Cilt: 15

Kaynak Göster

APA Ugurlu, G. (2021). Investigation of Conformation, Vibration and Electronic Properties of 2- Methoxythiophene Molecule by Theoretical Methods. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 15, 28-34. https://doi.org/10.55549/epstem.1052149