Konferans Bildirisi
BibTex RIS Kaynak Göster

Gissmo Failure Modelling for Crashworthiness Analysis Using Different Test Specimens

Yıl 2021, Cilt: 16 , 31 - 38, 31.12.2021
https://doi.org/10.55549/epstem.1052213

Öz

The demand for lightweight products to reduce CO2 emissions and high safety requirements is an increasing trend, especially in the vehicle and electrical appliance industry. The use of high-strength steels instead of conventional mild steels by using predictive modeling methods in finite element analysis plays a major role. Moreover, physical full-scale crash tests are time-consuming as well as expensive. Crash tolerance analysis in the finite element environment depends on the accuracy of the damage and the definition of the material model parameters. This study examines the damage model GISSMO-Generalized Increasing Stress State-induced damage model and the onset of fracture was calculated by sample optimization via finite element analysis in this study. This research presents the modeling of a specific region of the material fracture curve using the different geometric samples. The results of the numerical simulations are validated by comparing the experimental data of the optimized test samples with their measurements.

Kaynakça

  • Bao, Y., & Wierzbicki, T. (2004). On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46(1), 81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  • Driemeier, L., Brünig, M., Micheli, G., & Alves, M. (2010). Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mechanics of Materials, 42(2), 207–217. https://doi.org/10.1016/j.mechmat.2009.11.012
  • Gholami, T., Lescheticky, J., & Paßmann, R. (2003, June). Crashworthiness simulation of automobiles with ABAQUS/Explicit. In Journal of Abaqus User Conference. BMW Group.
  • Hochholdinger, B., Grass, H., Lipp, A., Hora, P., & BMW AG, M. (2009). Determination of flow curves by stack compression tests and inverse analysis for the simulation of hot forming. 7th European LS-DYNA conference.
  • Hörling, D. (2015). Parameter identification of GISSMO damage model for DOCOL 1200m: A study on crash simulation for high strength steel sheet components. DIVA. http://kau.diva-portal.org/smash/record.jsf?pid=diva2%3A845116&dswid=-9443.
  • Liu, W., Lian, J., & Münstermann, S. (2019). Damage mechanism analysis of a high-strength dual-phase steel sheet with optimized fracture samples for various stress states and loading rates. Engineering Failure Analysis, 106, 104–138. https://doi.org/10.1016/j.engfailanal.2019.08.004
  • Merklein, M., & Kuppert, A. (2009). A method for the layer compression test considering the anisotropic material behavior. International Journal of Material Forming, 2(1), 483–486. https://doi.org/10.1007/s12289-009-0592-8
  • Mohr, D., & Doyoyo, M. (2004). Experimental investigation on the plasticity of hexagonal aluminum honeycomb under multiaxial loading. Journal of Applied Mechanics, 71(3), 375–385. https://doi.org/10.1115/1.1683715
  • Mohr, D., & Henn, S. (2007). Calibration of stress-triaxiality dependent crack formation criteria: A new hybrid experimental–numerical method. Experimental Mechanics, 47(6), 805–820. https://doi.org/10.1007/s11340-007-9039-7
  • Neukamm, F., Feucht, M., & Haufe A. (2009). The stamping to crash simulation process chain: A study of damage parameters with regard to element size dependency in the crashworthiness prediction.
  • Pawelski, O. (1967). Über das Stauchen von Hohlzylindern und seine Eignung zur Bestimmung der Formänderungsfestigkeit Dünner Bleche. Archiv Für Das Eisenhüttenwesen, 38(6), 437–442. https://doi.org/10.1002/srin.196704204
  • Peirs, J., Verleysen, P., & Degrieck, J. (2012). Novel technique for static and dynamic shear testing of ti6al4v sheet. Experimental Mechanics, 52(7), 729–741. https://doi.org/10.1007/s11340-011-9541-9
  • Road Safety Annual Report. (2018). Road Safety Annual Report 2018, 4–12. https://doi.org/10.1787/1c884dcb-en
  • Roth, C. C., & Mohr, D. (2016). Ductile fracture experiments with locally proportional loading histories. International Journal of Plasticity, 79, 328–354. https://doi.org/10.1016/j.ijplas.2015.08.004
Yıl 2021, Cilt: 16 , 31 - 38, 31.12.2021
https://doi.org/10.55549/epstem.1052213

Öz

Kaynakça

  • Bao, Y., & Wierzbicki, T. (2004). On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46(1), 81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  • Driemeier, L., Brünig, M., Micheli, G., & Alves, M. (2010). Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mechanics of Materials, 42(2), 207–217. https://doi.org/10.1016/j.mechmat.2009.11.012
  • Gholami, T., Lescheticky, J., & Paßmann, R. (2003, June). Crashworthiness simulation of automobiles with ABAQUS/Explicit. In Journal of Abaqus User Conference. BMW Group.
  • Hochholdinger, B., Grass, H., Lipp, A., Hora, P., & BMW AG, M. (2009). Determination of flow curves by stack compression tests and inverse analysis for the simulation of hot forming. 7th European LS-DYNA conference.
  • Hörling, D. (2015). Parameter identification of GISSMO damage model for DOCOL 1200m: A study on crash simulation for high strength steel sheet components. DIVA. http://kau.diva-portal.org/smash/record.jsf?pid=diva2%3A845116&dswid=-9443.
  • Liu, W., Lian, J., & Münstermann, S. (2019). Damage mechanism analysis of a high-strength dual-phase steel sheet with optimized fracture samples for various stress states and loading rates. Engineering Failure Analysis, 106, 104–138. https://doi.org/10.1016/j.engfailanal.2019.08.004
  • Merklein, M., & Kuppert, A. (2009). A method for the layer compression test considering the anisotropic material behavior. International Journal of Material Forming, 2(1), 483–486. https://doi.org/10.1007/s12289-009-0592-8
  • Mohr, D., & Doyoyo, M. (2004). Experimental investigation on the plasticity of hexagonal aluminum honeycomb under multiaxial loading. Journal of Applied Mechanics, 71(3), 375–385. https://doi.org/10.1115/1.1683715
  • Mohr, D., & Henn, S. (2007). Calibration of stress-triaxiality dependent crack formation criteria: A new hybrid experimental–numerical method. Experimental Mechanics, 47(6), 805–820. https://doi.org/10.1007/s11340-007-9039-7
  • Neukamm, F., Feucht, M., & Haufe A. (2009). The stamping to crash simulation process chain: A study of damage parameters with regard to element size dependency in the crashworthiness prediction.
  • Pawelski, O. (1967). Über das Stauchen von Hohlzylindern und seine Eignung zur Bestimmung der Formänderungsfestigkeit Dünner Bleche. Archiv Für Das Eisenhüttenwesen, 38(6), 437–442. https://doi.org/10.1002/srin.196704204
  • Peirs, J., Verleysen, P., & Degrieck, J. (2012). Novel technique for static and dynamic shear testing of ti6al4v sheet. Experimental Mechanics, 52(7), 729–741. https://doi.org/10.1007/s11340-011-9541-9
  • Road Safety Annual Report. (2018). Road Safety Annual Report 2018, 4–12. https://doi.org/10.1787/1c884dcb-en
  • Roth, C. C., & Mohr, D. (2016). Ductile fracture experiments with locally proportional loading histories. International Journal of Plasticity, 79, 328–354. https://doi.org/10.1016/j.ijplas.2015.08.004
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

M. Emin Tamer

Almila Gulfem Ozgultekın

Beyzanur Aydın

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021Cilt: 16

Kaynak Göster

APA Tamer, M. E., Ozgultekın, A. G., & Aydın, B. (2021). Gissmo Failure Modelling for Crashworthiness Analysis Using Different Test Specimens. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 16, 31-38. https://doi.org/10.55549/epstem.1052213