Konferans Bildirisi
BibTex RIS Kaynak Göster

Effect of Secondary Aging of Copper-Chromium Alloys to Electrical Conductivity

Yıl 2021, Cilt: 16 , 63 - 68, 31.12.2021
https://doi.org/10.55549/epstem.1068548

Öz

Copper-chromium alloys are the most important spot-welding tips and disks; it is also used where high strength together with electrical conductivity is required. Electrical conductivity is also important for optimum energy consumption. It is obvious that if highly conductive materials are used, we need low electric current where today energy is a very precious thing. In our study due to the industrial requirement of highly durable and more consistent parts needs, secondary aging was used to obtain more efficient materials. Electrical conductivity is a must, therefore the copper chromium alloys were observed for their resistances for various processing conditions, like as cast, aged, and secondarily aged. The electrical resistance measurements for all conditions were done and compared. The aging heat treatment was done at 650 oC for 4 hours. Secondary aging heat treatment was done at 400 oC for 2, 4, and 6 hours. The lowest specific electrical resistivity was obtained from secondary aged at 400 oC for 2 hours as 0.0074 mΩ mm2/mm. The resistance of as-cast copper-chromium alloy was measured as 0.078 mΩ mm2/mm which is almost ten-fold resistive than secondarily aged sample therefore it can be said that the secondary aging heat treatment was found to have a favorable electrical conductance.

Kaynakça

  • C. A. D. (2010, August). Copper's Bright Past and Brighter Future. Copper Devlopment Association. https://www.copper.org/publications/newsletters/discover/2010/August/
  • Chakrabarti, D., & Laughlin, D. (1984). The Cr-Cu (chromium-copper) system. Bulletin of Alloy Phase Diagrams, 5(1), 59-68.
  • Davis, J. R. (2001). Copper and copper alloys. ASM international.
  • Durashevich, G., Cvetkovski, V., & Jovanovich, V. (2002). Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy. Bulletin of Materials Science, 25(1), 59-62. doi:10.1007/bf02704596
  • Ellis, T. W., Kim, S. T., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Role of Age-Hardening. Journal of Materials Engineering and Performance, 4(5), 581-586. <Go to ISI>://WOS:A1995TF74800009
  • Gao, N., Huttunen-Saarivirta, E., Tiainen, T., & Hemmila, M. (2003). Influence of prior deformation on the age hardening of a phosphorus-containing Cu-0.61wt.%Cr alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 342(1-2), 270-278. <Go to ISI>://WOS:000179568900031
  • Kim, S. T., Berge, P. M., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Optimizing Strength and Conductivity. Journal of Materials Engineering and Performance, 4(5), 573-580. <Go to ISI>://WOS:A1995TF74800008
  • Krishna, S. C., Rao, G. S., Jha, A. K., Pant, B., & George, K. M. (2015). Analysis of Phases and Their Role in Strengthening of Cu-Cr-Zr-Ti Alloy. Journal of Materials Engineering and Performance, 24(6), 2341-2345. <Go to ISI>://WOS:000354890800022
  • Lipowsky, H., Arpaci, E. . (2007). Copper in the automotive industry. Wiley-Vch Verlag GmbH & Co. KGaA.
  • Raghavan, R., Harzer, T. P., Djaziri, S., Hieke, S. W., Kirchlechner, C., & Dehm, G. (2017). Maintaining strength in supersaturated copper-chromium thin films annealed at 0.5 of the melting temperature of Cu. Journal of Materials Science, 52(2), 913-920. <Go to ISI>://WOS:000387227300023
  • Schlesinger, Mark E., K. M. J., SoleKathryn C., Davenport William G.I. (2011). Extractive Metallurgy of Copper (5th Edition ed.). Elsevier.
  • Sun, S. J., Sakai, S., & Suzuki, H. G. (2001). Effect of alloying elements on the cold deformation behavior of Cr phase and the tensile strength of Cu-15Cr based in situ composites. Materials Transactions, 42(6), 1007-1014. <Go to ISI>://WOS:000169993000015
  • Wang, Z. Q., Zhong, Y. B., Cao, G. H., Wang, C., Wang, J., Ren, W. L., . . . Ren, Z. M. (2009). Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 479(1-2), 303-306. <Go to ISI>://WOS:000267063300075
Yıl 2021, Cilt: 16 , 63 - 68, 31.12.2021
https://doi.org/10.55549/epstem.1068548

Öz

Kaynakça

  • C. A. D. (2010, August). Copper's Bright Past and Brighter Future. Copper Devlopment Association. https://www.copper.org/publications/newsletters/discover/2010/August/
  • Chakrabarti, D., & Laughlin, D. (1984). The Cr-Cu (chromium-copper) system. Bulletin of Alloy Phase Diagrams, 5(1), 59-68.
  • Davis, J. R. (2001). Copper and copper alloys. ASM international.
  • Durashevich, G., Cvetkovski, V., & Jovanovich, V. (2002). Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy. Bulletin of Materials Science, 25(1), 59-62. doi:10.1007/bf02704596
  • Ellis, T. W., Kim, S. T., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Role of Age-Hardening. Journal of Materials Engineering and Performance, 4(5), 581-586. <Go to ISI>://WOS:A1995TF74800009
  • Gao, N., Huttunen-Saarivirta, E., Tiainen, T., & Hemmila, M. (2003). Influence of prior deformation on the age hardening of a phosphorus-containing Cu-0.61wt.%Cr alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 342(1-2), 270-278. <Go to ISI>://WOS:000179568900031
  • Kim, S. T., Berge, P. M., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Optimizing Strength and Conductivity. Journal of Materials Engineering and Performance, 4(5), 573-580. <Go to ISI>://WOS:A1995TF74800008
  • Krishna, S. C., Rao, G. S., Jha, A. K., Pant, B., & George, K. M. (2015). Analysis of Phases and Their Role in Strengthening of Cu-Cr-Zr-Ti Alloy. Journal of Materials Engineering and Performance, 24(6), 2341-2345. <Go to ISI>://WOS:000354890800022
  • Lipowsky, H., Arpaci, E. . (2007). Copper in the automotive industry. Wiley-Vch Verlag GmbH & Co. KGaA.
  • Raghavan, R., Harzer, T. P., Djaziri, S., Hieke, S. W., Kirchlechner, C., & Dehm, G. (2017). Maintaining strength in supersaturated copper-chromium thin films annealed at 0.5 of the melting temperature of Cu. Journal of Materials Science, 52(2), 913-920. <Go to ISI>://WOS:000387227300023
  • Schlesinger, Mark E., K. M. J., SoleKathryn C., Davenport William G.I. (2011). Extractive Metallurgy of Copper (5th Edition ed.). Elsevier.
  • Sun, S. J., Sakai, S., & Suzuki, H. G. (2001). Effect of alloying elements on the cold deformation behavior of Cr phase and the tensile strength of Cu-15Cr based in situ composites. Materials Transactions, 42(6), 1007-1014. <Go to ISI>://WOS:000169993000015
  • Wang, Z. Q., Zhong, Y. B., Cao, G. H., Wang, C., Wang, J., Ren, W. L., . . . Ren, Z. M. (2009). Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 479(1-2), 303-306. <Go to ISI>://WOS:000267063300075
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bedri Baksan

Ibrahim Celıkyurek

Adem Tasdemır

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021Cilt: 16

Kaynak Göster

APA Baksan, B., Celıkyurek, I., & Tasdemır, A. (2021). Effect of Secondary Aging of Copper-Chromium Alloys to Electrical Conductivity. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 16, 63-68. https://doi.org/10.55549/epstem.1068548