Research Article
BibTex RIS Cite

Preparation and Characterization of Biocomposite Polylactic Acid/Coconut Fibre

Year 2018, Issue: 2, 1 - 9, 19.08.2018

Abstract

In this research,
biocomposite was prepared by using coconut fiber as filler and polylactic acid
(PLA) as matrix.
Coconut fiber undergo three different treatments which are sodium hydroxide,
bleaching and maleic anhydride. Biocomposite was produced by varied composition
of coconut fiber into 2%, 4% and 6% to be added into PLA. Characterization of
coconut fiber was carried out by using infrared spectroscopy analysis (FTIR)
analysis in order to study the changes in functional groups and degree of
crystallinity of coconut fiber after treatment. Characterization of the
biocomposite produced was carried out by using mechanical test to study the
mechanical properties of biocomposites. Based on the results from FTIR
analysis, certain functional group in original coconut fibre structure
disappeared after chemical treatment. XRD analysis also showed that bleached
coconut fibre has the highest crystallinity. Overall, the result from tensile
test showed that maximum load and the modulus Young of biocomposite increase
with increase composition of coconut fiber until an optimum point which is at
2% coconut fiber. While elongation at break decreased with increasing
composition of coconut fiber.

References

  • Agarwal Bhagawan, D. B. L. 1980. Analysis and preparation of fiber composites Ed.: Wiley-Interscience Publication. Alemdar, A. & Sain, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68(2): 557-565. Arrakhiz, F. Z., El Achaby, M., Kakou, A. C., Vaudreuil, S., Benmoussa, K., Bouhfid, R., Fassi-Fehri, O. & Qaiss, A. 2012. Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials & Design 37(0): 379-383. Avella, M., Bozzi, C., dell'Erba, R., Focher, B., Marzetti, A. & Martuscelli, E. 1995. Steam-exploded wheat straw fibers as reinforcing material for polypropylene-based composites. Characterization and properties. Die Angewandte Makromolekulare Chemie 233(1): 149-166. Averous, L. & Boquillon, N. 2004. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers 56(2): 111-122. Cantero, G., Arbelaiz, A., Llano-Ponte, R. & Mondragon, I. 2003. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology 63(9): 1247-1254. Chen, Y., Liu, C., Chang, P. R., Anderson, D. P. & Huneault, M. A. 2009. Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polymer Engineering & Science 49(2): 369-378. Din, R. H. 2007. Komposit Lignoselulosa-Polimer Ed.: Universiti Sains Malaysia. Gu, H. 2009. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Materials & Design 30(9): 3931-3934. Haque, M. M., Hasan, M., Islam, M. S. & Ali, M. E. 2009. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology 100(20): 4903-4906. Iovino, R., Zullo, R., Rao, M. A., Cassar, L. & Gianfreda, L. 2008. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability 93(1): 147-157. Ishak Ahmad, M. S. J. & Abdullah, I. 2009. Rice Husk and Clay Loadings into High Density Polyethylene-Natural Rubber-Liquid Natural Rubber Matrix 38(3): 381-386. Ismail, H., Nizam, J. M. & Abdul Khalil, H. P. S. 2001. The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polymer Testing 20(2): 125-133. K.Mohanty, A., Misra, M. & T.Drazal, L. 2005. Natural Fibers, Biopolymer, and Biocomposites Ed.: Taylor & Francis Group. Kalia, S., Kaith, B. S. & Kaur, I. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science 49(7): 1253-1272. Lee, S.-H. & Wang, S. 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing 37(1): 80-91. Liu, L., Yu, J., Cheng, L. & Qu, W. 2009. Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing 40(5): 669-674. Lopattananon, N., Panawarangkul, K., Sahakaro, K. & Ellis, B. 2006. Performance of pineapple leaf fiber– natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science 102(2): 1974-1984. Ma, A. 2009. Impacts of Maleic Anhydride and Sodium Hydroxide on Interfacial Properties of Wheat Straw Low Density Linear Polyethylene(LLDPE).Tesis Department of Chemistry Four Years Thesis Project Course Mohanty, A. K., Misra, M. & Hinrichsen, G. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276-277(1): 1-24. Mustata, F., Tudorachi, N. & Rosu, D. 2012. Thermal behavior of some organic/inorganic composites based on epoxy resin and calcium carbonate obtained from conch shell of Rapana thomasiana. Composites Part B: Engineering 43(2): 702-710. Pickering, K. L., Abdalla, A., Ji, C., McDonald, A. G. & Franich, R. A. 2003. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Composites Part A: Applied Science and Manufacturing 34(10): 915-926. Rosa, M. F., Chiou, B.-s., Medeiros, E. S., Wood, D. F., Williams, T. G., Mattoso, L. H. C., Orts, W. J. & Imam, S. H. 2009. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology 100(21): 5196-5202. Rout, J., Tripathy, S. S., Nayak, S. K., Misra, M. & Mohanty, A. K. 2001. Scanning electron microscopy study of chemically modified coir fibers. Journal of Applied Polymer Science 79(7): 1169-1177. Satyanarayana, K. G., Arizaga, G. G. C. & Wypych, F. 2009. Biodegradable composites based on lignocellulosic fibers—An overview. Progress in Polymer Science 34(9): 982-1021. Yussuf, A., Massoumi, I. & Hassan, A. 2010. Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment 18(3): 422-429.
Year 2018, Issue: 2, 1 - 9, 19.08.2018

Abstract

References

  • Agarwal Bhagawan, D. B. L. 1980. Analysis and preparation of fiber composites Ed.: Wiley-Interscience Publication. Alemdar, A. & Sain, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68(2): 557-565. Arrakhiz, F. Z., El Achaby, M., Kakou, A. C., Vaudreuil, S., Benmoussa, K., Bouhfid, R., Fassi-Fehri, O. & Qaiss, A. 2012. Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials & Design 37(0): 379-383. Avella, M., Bozzi, C., dell'Erba, R., Focher, B., Marzetti, A. & Martuscelli, E. 1995. Steam-exploded wheat straw fibers as reinforcing material for polypropylene-based composites. Characterization and properties. Die Angewandte Makromolekulare Chemie 233(1): 149-166. Averous, L. & Boquillon, N. 2004. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers 56(2): 111-122. Cantero, G., Arbelaiz, A., Llano-Ponte, R. & Mondragon, I. 2003. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology 63(9): 1247-1254. Chen, Y., Liu, C., Chang, P. R., Anderson, D. P. & Huneault, M. A. 2009. Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polymer Engineering & Science 49(2): 369-378. Din, R. H. 2007. Komposit Lignoselulosa-Polimer Ed.: Universiti Sains Malaysia. Gu, H. 2009. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Materials & Design 30(9): 3931-3934. Haque, M. M., Hasan, M., Islam, M. S. & Ali, M. E. 2009. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology 100(20): 4903-4906. Iovino, R., Zullo, R., Rao, M. A., Cassar, L. & Gianfreda, L. 2008. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability 93(1): 147-157. Ishak Ahmad, M. S. J. & Abdullah, I. 2009. Rice Husk and Clay Loadings into High Density Polyethylene-Natural Rubber-Liquid Natural Rubber Matrix 38(3): 381-386. Ismail, H., Nizam, J. M. & Abdul Khalil, H. P. S. 2001. The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polymer Testing 20(2): 125-133. K.Mohanty, A., Misra, M. & T.Drazal, L. 2005. Natural Fibers, Biopolymer, and Biocomposites Ed.: Taylor & Francis Group. Kalia, S., Kaith, B. S. & Kaur, I. 2009. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science 49(7): 1253-1272. Lee, S.-H. & Wang, S. 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing 37(1): 80-91. Liu, L., Yu, J., Cheng, L. & Qu, W. 2009. Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing 40(5): 669-674. Lopattananon, N., Panawarangkul, K., Sahakaro, K. & Ellis, B. 2006. Performance of pineapple leaf fiber– natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science 102(2): 1974-1984. Ma, A. 2009. Impacts of Maleic Anhydride and Sodium Hydroxide on Interfacial Properties of Wheat Straw Low Density Linear Polyethylene(LLDPE).Tesis Department of Chemistry Four Years Thesis Project Course Mohanty, A. K., Misra, M. & Hinrichsen, G. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276-277(1): 1-24. Mustata, F., Tudorachi, N. & Rosu, D. 2012. Thermal behavior of some organic/inorganic composites based on epoxy resin and calcium carbonate obtained from conch shell of Rapana thomasiana. Composites Part B: Engineering 43(2): 702-710. Pickering, K. L., Abdalla, A., Ji, C., McDonald, A. G. & Franich, R. A. 2003. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Composites Part A: Applied Science and Manufacturing 34(10): 915-926. Rosa, M. F., Chiou, B.-s., Medeiros, E. S., Wood, D. F., Williams, T. G., Mattoso, L. H. C., Orts, W. J. & Imam, S. H. 2009. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology 100(21): 5196-5202. Rout, J., Tripathy, S. S., Nayak, S. K., Misra, M. & Mohanty, A. K. 2001. Scanning electron microscopy study of chemically modified coir fibers. Journal of Applied Polymer Science 79(7): 1169-1177. Satyanarayana, K. G., Arizaga, G. G. C. & Wypych, F. 2009. Biodegradable composites based on lignocellulosic fibers—An overview. Progress in Polymer Science 34(9): 982-1021. Yussuf, A., Massoumi, I. & Hassan, A. 2010. Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment 18(3): 422-429.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Leong Kok Seng

Publication Date August 19, 2018
Published in Issue Year 2018Issue: 2

Cite

APA Kok Seng, L. (2018). Preparation and Characterization of Biocomposite Polylactic Acid/Coconut Fibre. The Eurasia Proceedings of Science Technology Engineering and Mathematics(2), 1-9.