Year 2018,
Issue: 2, 72 - 80, 19.08.2018
Yonca Yilmaz
Ahmet Harmankaya
Sevda Manap
Haydar Yuksek
Ozlem Gursoy Kol
Muzaffer Alkan
References
-
Ahmad I., Mehmood Z., & Mohammed F., (1998). Screening of some Indian Medicinal Plants for Their Antimicrobial properties. Journal of Ethnopharmacology, 62, 183-193.
Aktas-Yokus, O., Yuksek, H., Gursoy-Kol, O., & Alpay-Karaoglu, S. (2015). Synthesis and biological evaluation of new 1,2,4-triazole derivatives with their potentiometric titrations. Medicinal Chemistry Research, 24(7), 2813–2824. doi: 10.1007/s00044-015-1334-8
Baumann, J., Wurn, G., & Bruchlausen, V. (1979). Prostaglandin synthetase inhibiting O2 – radical scavenging properties of some flavonoids and related phenolic compounds. Naunyn-Schmiedebergs Archives of Pharmacology, 308, R27.
Blois, M. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. http://doi.org/10.1038/1811199a0
Chen, D., Zhai, X., Yuan, Q. H., Luo, J., Xie, S. C., & Gong, P. (2010). Synthesis and in vitro anti-hepatitis B virus activity of 1H-benzimidazol-5-ol derivatives. Chinese Chemical Letters, 21(11), 1326-1329. doi: 10.1016/j.cclet.2010.05.011
Chidananda, N., Poojary, B., Sumangala, V., Kumari, N. S., Shetty, P., & Arulmoli, T. (2012). Facile synthesis, characterization and pharmacological activities of 3,6-disubstituted 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles and 5,6-dihydro-3,6-disubstituted-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. European Journal of Medicinal Chemistry, 51, 124–136. http://doi.org/10.1016/j.ejmech.2012.02.030
Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as proxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. http://doi.org/10.1006/abbi.1994.1485
Finefrock, A. E., Bush, A. I., & Doraiswamy, P. M. (2003). Current status of metals as therapeutic targets in Alzheimer’s disease. Journal of the American Geriatrics Society. 51(8), 1143–1148. http://doi.org/10.1046/j.1532-5415.2003.51368.x
Halliwell, B. (1996). Antioxidants: The Basics-what they are and how to evaluate them. Advances in Pharmacology, 38(C), 3–20. http://doi.org/10.1016/S1054-3589(08)60976-X
Hamama, W. S., Zoorob, H. H., Gouda, M. A., & Afsah, E. M. (2011). Synthesis and antimicrobial and antioxidant activities of simple saccharin derivatives with N-basic side chains. Pharmaceutical Chemistry Journal, 45(2), 118–124. doi: 10.1007/s11094-011-0573-3
Koca E., Yıldız Ç., & Köçek N. (2010). 3-m-Klorobenzil-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on ve Bazı Türevlerinin Sentezi. Bitirme Tezi, Kakkas Ünv. Fen Edebiyat Fakültesi Kimya Bölümü, Kars.
Köksal, M., & Bilge, S. S. (2007). Synthesis and antidepressant-like profile of novel 1-aryl-3-[(4-benzyl)piperidine-1-yl]propane derivatives. Archiv Der Pharmazie, 340(6), 299–303. doi: 10.1002/ardp.200700028
Liu, D., Yu, W., Li, J., Pang, C., & Zhao, L. (2013). Novel 2-(E)-substituted benzylidene-6-(N-substituted aminomethyl)cyclohexanones and cyclohexanols as analgesic and anti-inflammatory agents. Medicinal Chemistry Research, 22(8), 3779–3786. doi: 10.1007/s00044-012-0362-x
Maddila, S., & Jonnalagadda, S. B. (2012). New class of triazole derivatives and their antimicrobial activity. Letters in Drug Design & Discovery, 9(7), 687–693. doi: 10.2174/157018012801319526.
Meir, S., Kanner, J., Akiri, B., & Philosoph-Hadas, S. (1995). Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43(7), 1813–1819.
McClements, D., & Decker, E. (2000). Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science, 65(8), 1270–1282. http://doi.org/10.1111/j.1365-2621.2000.tb10596.x
Nithinchandra, Kalluraya, B., Aamir, S., & Shabaraya, A. R. (2012). Regioselective reaction: Synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone. European Journal of Medicinal Chemistry, 54, 597–604. doi: 10.1016/j.ejmech.2012.06.011
Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(17), 307–315. http://doi.org/10.5264/eiyogakuzashi.44.307
Ozkan-Daguyan, I., Sahin, F., & Koksal, M. (2013). Synthesis, Characterization and Antimicrobial Activity of Novel 3,5-Disubstituted-1,3,4-oxadiazole-2-ones. Revista de Chimie -Bucharest- Original Edition-, 64(5), 534–539.
Pati, H. N., Das, U., Kawase, M., Sakagami, H., Balzarini, J., De Clercq, E., & Dimmock, J. R. (2008). 1-Aryl-2-dimethylaminomethyl-2-propen-1-one hydrochlorides and related adducts: A quest for selective cytotoxicity for malignant cells. Bioorganic & Medicinal Chemistry, 16(10), 5747–5753. doi: 10.1016/j.bmc.2008.03.060
Perez C., Pauli M., & Bazerque P., (1990). An Antibiotic Assay by the Well Agar Method. Acta Biologia et Medicine Experimentalis, 15,113-115.
Savariz, F. C., Formagio, A. S. N., Barbosa, V. A., Foglio, M. A., Carvalho, J. E. de, Duarte, M. C. T., … Sarragiotto, M. H. (2010). Synthesis, antitumor and antimicrobial activity of novel 1-substituted phenyl-3-[3-alkylamino(methyl)-2-thioxo-1,3,4-oxadiazol-5-yl] β-carboline derivatives. Journal of the Brazilian Chemical Society, 21(2), 288–298. doi: 10.1590/S0103-50532010000200014.
Soares, J. R., Dinis, T. C. P., Cunha, A. P., & Almeida, L. M. (1997). Antioxidant activities of some extracts of Thymus zygis. Free Radical Research, 26(5), 469–478. http://doi.org/10.3109/10715769709084484
Tramontini, M., & Angiolini, L. (1994). Mannich Bases: Chemistry and Uses. CRC Press.
Sriram, D., Yogeeswari, P., Dinakaran, M., & Sowmya, M. (2008). Synthesis, anti-HIV and antitubercular activities of nelfinavir diester derivatives. Biomedicine and Pharmacotherapy, 62(1), 1–5. doi: 10.1016/j.biopha.2007.08.002
Yamaguchi, F., Ariga, T., Yoshimura, Y., & Nakazawa, H. (2000). Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. Journal of Agricultural and Food Chemistry, 48(2), 180–185. http://doi.org/10.1021/jf990845y
Yildirim, A., Mavi, A., & Kara, A. A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49(8), 4083–4089. http://doi.org/10.1021/jf0103572
Antioxidant and Antimicrobial Activities of Some Newly Synthesized 4-[1- (2,6-Dimethylmorpholin-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4- triazol-5-on-4-yl-azomethine]-2-methoxyphenyl benzoates
Year 2018,
Issue: 2, 72 - 80, 19.08.2018
Yonca Yilmaz
Ahmet Harmankaya
Sevda Manap
Haydar Yuksek
Ozlem Gursoy Kol
Muzaffer Alkan
Abstract
In this study, 4-(3-alkyl/aryl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl-azomethine)-2-methoxyphenyl
benzoates were treated with 2,6-dimethylmorpholine in the presence of
formaldehyde according to the Mannich reaction to synthesize six novel
4-[1-(2,6-dimethylmorpholin-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-triazol-5-on-4-yl-azomethine]-2-methoxyphenyl
benzoates. The structures of synthesized six novel heterocyclic compounds were
characterized by IR, 13C-NMR and 1H-NMR spectroscopic
methods. The novel 4-[1-(2,6-dimethylmorpholin-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-triazol-5-on-4-yl-azomethine]-2-methoxyphenyl
benzoates were investigated in vitro
antioxidant properties by using reducing
power, free radical scavenging and metal chelating activity. For the
measurement of the reductive ability, Fe3+-Fe2+ transformation
was investigated in the presence of compound using by the method of Oyaizu (1986). The hydrogen atoms or electrons
donation ability of the synthesized compound was measured by DPPH. using the method of Blois (1958). The chelating effect of ferrous ions by the
compound was determined according to the method of Dinis, Madeira & Almeida (1994). BHT, BHA, EDTA and α-tocopherol
were used as reference antioxidant compounds. The new compounds were
examined in-vitro antimicrobial
properties against 6 different microorganisms (Bacillus substilis (ATCC11774), BacilluscCereus (ATCC11778),
Staphylococcus aureus (ATCC6538), Escherichia
coli (ATCC25922), Pseudomonas
aeruginosa (ATCC27853) and Klebsiella pneumonia (ATCC4352))
by the agar well method and the obtained results were evaluated.
References
-
Ahmad I., Mehmood Z., & Mohammed F., (1998). Screening of some Indian Medicinal Plants for Their Antimicrobial properties. Journal of Ethnopharmacology, 62, 183-193.
Aktas-Yokus, O., Yuksek, H., Gursoy-Kol, O., & Alpay-Karaoglu, S. (2015). Synthesis and biological evaluation of new 1,2,4-triazole derivatives with their potentiometric titrations. Medicinal Chemistry Research, 24(7), 2813–2824. doi: 10.1007/s00044-015-1334-8
Baumann, J., Wurn, G., & Bruchlausen, V. (1979). Prostaglandin synthetase inhibiting O2 – radical scavenging properties of some flavonoids and related phenolic compounds. Naunyn-Schmiedebergs Archives of Pharmacology, 308, R27.
Blois, M. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. http://doi.org/10.1038/1811199a0
Chen, D., Zhai, X., Yuan, Q. H., Luo, J., Xie, S. C., & Gong, P. (2010). Synthesis and in vitro anti-hepatitis B virus activity of 1H-benzimidazol-5-ol derivatives. Chinese Chemical Letters, 21(11), 1326-1329. doi: 10.1016/j.cclet.2010.05.011
Chidananda, N., Poojary, B., Sumangala, V., Kumari, N. S., Shetty, P., & Arulmoli, T. (2012). Facile synthesis, characterization and pharmacological activities of 3,6-disubstituted 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles and 5,6-dihydro-3,6-disubstituted-1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. European Journal of Medicinal Chemistry, 51, 124–136. http://doi.org/10.1016/j.ejmech.2012.02.030
Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as proxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. http://doi.org/10.1006/abbi.1994.1485
Finefrock, A. E., Bush, A. I., & Doraiswamy, P. M. (2003). Current status of metals as therapeutic targets in Alzheimer’s disease. Journal of the American Geriatrics Society. 51(8), 1143–1148. http://doi.org/10.1046/j.1532-5415.2003.51368.x
Halliwell, B. (1996). Antioxidants: The Basics-what they are and how to evaluate them. Advances in Pharmacology, 38(C), 3–20. http://doi.org/10.1016/S1054-3589(08)60976-X
Hamama, W. S., Zoorob, H. H., Gouda, M. A., & Afsah, E. M. (2011). Synthesis and antimicrobial and antioxidant activities of simple saccharin derivatives with N-basic side chains. Pharmaceutical Chemistry Journal, 45(2), 118–124. doi: 10.1007/s11094-011-0573-3
Koca E., Yıldız Ç., & Köçek N. (2010). 3-m-Klorobenzil-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on ve Bazı Türevlerinin Sentezi. Bitirme Tezi, Kakkas Ünv. Fen Edebiyat Fakültesi Kimya Bölümü, Kars.
Köksal, M., & Bilge, S. S. (2007). Synthesis and antidepressant-like profile of novel 1-aryl-3-[(4-benzyl)piperidine-1-yl]propane derivatives. Archiv Der Pharmazie, 340(6), 299–303. doi: 10.1002/ardp.200700028
Liu, D., Yu, W., Li, J., Pang, C., & Zhao, L. (2013). Novel 2-(E)-substituted benzylidene-6-(N-substituted aminomethyl)cyclohexanones and cyclohexanols as analgesic and anti-inflammatory agents. Medicinal Chemistry Research, 22(8), 3779–3786. doi: 10.1007/s00044-012-0362-x
Maddila, S., & Jonnalagadda, S. B. (2012). New class of triazole derivatives and their antimicrobial activity. Letters in Drug Design & Discovery, 9(7), 687–693. doi: 10.2174/157018012801319526.
Meir, S., Kanner, J., Akiri, B., & Philosoph-Hadas, S. (1995). Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43(7), 1813–1819.
McClements, D., & Decker, E. (2000). Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science, 65(8), 1270–1282. http://doi.org/10.1111/j.1365-2621.2000.tb10596.x
Nithinchandra, Kalluraya, B., Aamir, S., & Shabaraya, A. R. (2012). Regioselective reaction: Synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone. European Journal of Medicinal Chemistry, 54, 597–604. doi: 10.1016/j.ejmech.2012.06.011
Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(17), 307–315. http://doi.org/10.5264/eiyogakuzashi.44.307
Ozkan-Daguyan, I., Sahin, F., & Koksal, M. (2013). Synthesis, Characterization and Antimicrobial Activity of Novel 3,5-Disubstituted-1,3,4-oxadiazole-2-ones. Revista de Chimie -Bucharest- Original Edition-, 64(5), 534–539.
Pati, H. N., Das, U., Kawase, M., Sakagami, H., Balzarini, J., De Clercq, E., & Dimmock, J. R. (2008). 1-Aryl-2-dimethylaminomethyl-2-propen-1-one hydrochlorides and related adducts: A quest for selective cytotoxicity for malignant cells. Bioorganic & Medicinal Chemistry, 16(10), 5747–5753. doi: 10.1016/j.bmc.2008.03.060
Perez C., Pauli M., & Bazerque P., (1990). An Antibiotic Assay by the Well Agar Method. Acta Biologia et Medicine Experimentalis, 15,113-115.
Savariz, F. C., Formagio, A. S. N., Barbosa, V. A., Foglio, M. A., Carvalho, J. E. de, Duarte, M. C. T., … Sarragiotto, M. H. (2010). Synthesis, antitumor and antimicrobial activity of novel 1-substituted phenyl-3-[3-alkylamino(methyl)-2-thioxo-1,3,4-oxadiazol-5-yl] β-carboline derivatives. Journal of the Brazilian Chemical Society, 21(2), 288–298. doi: 10.1590/S0103-50532010000200014.
Soares, J. R., Dinis, T. C. P., Cunha, A. P., & Almeida, L. M. (1997). Antioxidant activities of some extracts of Thymus zygis. Free Radical Research, 26(5), 469–478. http://doi.org/10.3109/10715769709084484
Tramontini, M., & Angiolini, L. (1994). Mannich Bases: Chemistry and Uses. CRC Press.
Sriram, D., Yogeeswari, P., Dinakaran, M., & Sowmya, M. (2008). Synthesis, anti-HIV and antitubercular activities of nelfinavir diester derivatives. Biomedicine and Pharmacotherapy, 62(1), 1–5. doi: 10.1016/j.biopha.2007.08.002
Yamaguchi, F., Ariga, T., Yoshimura, Y., & Nakazawa, H. (2000). Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. Journal of Agricultural and Food Chemistry, 48(2), 180–185. http://doi.org/10.1021/jf990845y
Yildirim, A., Mavi, A., & Kara, A. A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49(8), 4083–4089. http://doi.org/10.1021/jf0103572