Research Article
BibTex RIS Cite
Year 2018, Issue: 3, 152 - 158, 01.12.2018

Abstract

References

  • Abdulateef, S. M. (2017). The effect of maternal care (acoustic stimulus) on embryonic development and hatching muscle of broiler chickens. The Iraqi Journal of Agricultural Science, 48(5), 1263-1274. Abdulateef, S.M. (2016).The influence of using different sounds chicken on the performance, behavioral and Physiological traits of broiler. Ph.D. Dissertation. University of Anbar – Agriculture college, Iraq. Alladi, P. A., Wadhwa, S., & Singh, N. (2002). Effect of prenatal auditory enrichment on developmental expression of synaptophysin and syntaxin 1 in chick brainstem auditory nuclei. Neuroscience, 114(3), 577-590.‏ Andrew, A. M. (2003). Spiking neuron models: Single neurons, populations, plasticity. Kybernetes, 32(7/8).‏ Baranowska, B., Baranowska-Bik, A., Bik, W., Wolinska-Witort, E., Martynska, L., & Chmielowska, M. (2007). Controversial opinions on the role of cocaine and amphetamine-regulated transcript (CART) in prolactin release. Neuro endocrinology letters, 28(5), 541-544.‏ Battisti, A. C., Fantetti, K. N., Moyers, B. A., & Fekete, D. M. (2014). A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2. Hearing research, 310, 1-12.‏ Butts, D. A., Weng, C., Jin, J., Yeh, C. I., Lesica, N. A., Alonso, J. M., & Stanley, G. B. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449(7158), 92.‏ Chaudhury, S., Jain, S., & Wadhwa, S. (2010). Expression of synaptic proteins in the hippocampus and spatial learning in chicks following prenatal auditory stimulation. Developmental neuroscience, 32(2), 114-124.‏ Chaudhury, S., Nag, T. C., Jain, S., & Wadhwa, S. (2013). Role of sound stimulation in reprogramming brain connectivity. Journal of biosciences, 38(3), 605-614.‏ Chen, G., Wang, L. P., & Tsien, J. Z. (2009). Neural population-level memory traces in the mouse hippocampus. PLoS one, 4(12), e8256. Duncan, B. D. (1955). Multiple range and multiple F test. Biometrics, 11: 1-24. Edens, F. W., & Parkhurst, C. R. (1994). Plasma growth hormone and prolactin response to FK 33-824, a synthetic opioid agonist, in broiler chickens. Poultry science, 73(11), 1746-1754.‏ Evans, E.F. (1975). Cochlear nerve and cochlear nucleus. In: Keidel W.D, Neff, W.D (ed) (Handbook of sensory physiology, vol V/2). Springer, Berlin Heidelberg New York, pp 2 108. Fox, B.K. (2005). Ghrelin stimulates growth hormone and prolactin release in the tilapia, oreochromis mossambicus. A Thesis of Msc. University Of Hawai'i. Animal Science. USA. Fox, T.; A. Brooke and B. Vaidya. (2015). Endocrinology. J.P Medical Ltd. ISBN: 978-1-907816-71-0. Goffin, V., & Kelly, P. A. (1997). The prolactin/growth hormone receptor family: structure/function relationships. Journal of mammary gland biology and neoplasia, 2(1), 7-17.‏ Grabauskas, G., Zhou, S. Y., Das, S., Lu, Y., Owyang, C., & Moises, H. C. (2004). Prolactin‐releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex. The Journal of physiology, 561(3), 821-839.‏ Halbreich, U., Kinon, B. J., Gilmore, J. A., & Kahn, L. S. (2003). Elevated prolactin levels in patients with schizophrenia: mechanisms and related adverse effects. Psychoneuroendocrinology, 28, 53-67.‏ Havenith, M. N., Yu, S., Biederlack, J., Chen, N. H., Singer, W., & Nikolić, D. (2011). Synchrony makes neurons fire in sequence, and stimulus properties determine who is ahead. Journal of neuroscience, 31(23), 8570-8584.‏ Hromádka, T., DeWeese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS biology, 6(1), e16.‏ Kesar, A. G. (2014). Effect of prenatal chronic noise exposure on the growth and development of body and brain of chick embryo. International Journal of Applied and Basic Medical Research, 4(1), 3.‏ Kumar, R., & Wadhwa, S. (2014). Effect of prenatal sound stimulation on the morphology of visual thalamic relay nuclei of domestic chick. cortex, 16, 17.‏ Limonta, P., Piva, F., Maggi, R., Dondi, D., Motta, M., & Martini, L. (1986). Morphine stimulates prolactin release in normal but not in castrated male rats. Journal of reproduction and fertility, 76(2), 745-750.‏ Nelson, R.J. (2011). An introduction to behavioral endocrinology. 4th ed. Sinauer Associates. Inc. ISBN: 978-0-87893-620-5 (Hardcover). Popper A.N., Fay R.R. (1980). Comparative studies of hearing in vertebrates. Springer, Berlin Heidelberg New York. Ripley, K. L., & Provine, R. R. (1972). Neural correlates of embryonic motility in the chick. Brain Research, 45(1), 127-134.‏ Sandell, L. L., Tjaden, N. E. B., Barlow, A. J., & Trainor, P. A. (2014). Cochleovestibular nerve development is integrated with migratory neural crest cells. Developmental biology, 385(2), 200-210.‏ Sanyal, T., Kumar, V., Nag, T. C., Jain, S., Sreenivas, V., & Wadhwa, S. (2013). Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks. PLoS One, 8(7), e67347.‏ SAS Institute. (2004). SAS/ETS 9.1 User's Guide. SAS Institute. Scanes, C.G. 2015. Sturkie’s Avian Physiology. Sixth Edition. Academic Press is an imprint of Elsevier. ISBN: 978-0-12-407160-5. Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal?. Nature Reviews Neuroscience, 6(5), 389. Wadhwa, S., Anand, P., & Bhowmick, D. (1999). Quantitative study of plasticity in the auditory nuclei of chick under conditions of prenatal sound attenuation and overstimulation with species specific and music sound stimuli. International journal of developmental neuroscience, 17(3), 239-253.‏ Zendehdel, M. and S. Hassanpour. (2014). Central regulation of food intake in mammals and birds: a review. Neurotransmitter.e251 1: 1-7. Zhang, H., Chen, G., Kuang, H., & Tsien, J. Z. (2013). Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus. PLoS one, 8(11), e79454.‏

The Influence of Stimulating The Neural Response on Physiological Response in Chicks

Year 2018, Issue: 3, 152 - 158, 01.12.2018

Abstract

The neural response in the chick is beginning during the development of
nerves and formation of the brain. At this stage, the chick begins to
discriminate and recognize the external stimuli, as sound, light, and
heat...etc. In nature, the hen incubates eggs and released the sound for
hearing to chicks inside the egg. The chick will gain comfort and safety for
the hen's feeling beside it. But in the artificial hatchery, there isn't this
technical. So,  the hatcheries were
provided with different sounds as external stimuli and studied the neural
response and physiological response. This study was carried out in University
of Anbar, College of Agriculture, Animal Production Dept. by using 240
fertilized egg (Ross 308), distributed to four treatments,T1= first treatment
control treatment without hearing any sound, T2= second treatment hearing the
hen call , T3= treatment third hearing  chicks hatched call and T4=
treatment fourth hearing chick with hen call, each treatment divided into three
replicates and each repeater 20 eggs, hearing the sound from the age of 5 days
form incubation and until the day of hatching, the sound was given for a period
of 15 minutes per hour in 24 hours, with usually (100-200 Hz)
sound density of 65 dB. the results showing: significantly (P≤0.01)
improvement in neural response (motility of nerves ) and improvement in
physiological response (brain development, weight brain, and increasing growth
hormone and prolactin hormone)

References

  • Abdulateef, S. M. (2017). The effect of maternal care (acoustic stimulus) on embryonic development and hatching muscle of broiler chickens. The Iraqi Journal of Agricultural Science, 48(5), 1263-1274. Abdulateef, S.M. (2016).The influence of using different sounds chicken on the performance, behavioral and Physiological traits of broiler. Ph.D. Dissertation. University of Anbar – Agriculture college, Iraq. Alladi, P. A., Wadhwa, S., & Singh, N. (2002). Effect of prenatal auditory enrichment on developmental expression of synaptophysin and syntaxin 1 in chick brainstem auditory nuclei. Neuroscience, 114(3), 577-590.‏ Andrew, A. M. (2003). Spiking neuron models: Single neurons, populations, plasticity. Kybernetes, 32(7/8).‏ Baranowska, B., Baranowska-Bik, A., Bik, W., Wolinska-Witort, E., Martynska, L., & Chmielowska, M. (2007). Controversial opinions on the role of cocaine and amphetamine-regulated transcript (CART) in prolactin release. Neuro endocrinology letters, 28(5), 541-544.‏ Battisti, A. C., Fantetti, K. N., Moyers, B. A., & Fekete, D. M. (2014). A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2. Hearing research, 310, 1-12.‏ Butts, D. A., Weng, C., Jin, J., Yeh, C. I., Lesica, N. A., Alonso, J. M., & Stanley, G. B. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449(7158), 92.‏ Chaudhury, S., Jain, S., & Wadhwa, S. (2010). Expression of synaptic proteins in the hippocampus and spatial learning in chicks following prenatal auditory stimulation. Developmental neuroscience, 32(2), 114-124.‏ Chaudhury, S., Nag, T. C., Jain, S., & Wadhwa, S. (2013). Role of sound stimulation in reprogramming brain connectivity. Journal of biosciences, 38(3), 605-614.‏ Chen, G., Wang, L. P., & Tsien, J. Z. (2009). Neural population-level memory traces in the mouse hippocampus. PLoS one, 4(12), e8256. Duncan, B. D. (1955). Multiple range and multiple F test. Biometrics, 11: 1-24. Edens, F. W., & Parkhurst, C. R. (1994). Plasma growth hormone and prolactin response to FK 33-824, a synthetic opioid agonist, in broiler chickens. Poultry science, 73(11), 1746-1754.‏ Evans, E.F. (1975). Cochlear nerve and cochlear nucleus. In: Keidel W.D, Neff, W.D (ed) (Handbook of sensory physiology, vol V/2). Springer, Berlin Heidelberg New York, pp 2 108. Fox, B.K. (2005). Ghrelin stimulates growth hormone and prolactin release in the tilapia, oreochromis mossambicus. A Thesis of Msc. University Of Hawai'i. Animal Science. USA. Fox, T.; A. Brooke and B. Vaidya. (2015). Endocrinology. J.P Medical Ltd. ISBN: 978-1-907816-71-0. Goffin, V., & Kelly, P. A. (1997). The prolactin/growth hormone receptor family: structure/function relationships. Journal of mammary gland biology and neoplasia, 2(1), 7-17.‏ Grabauskas, G., Zhou, S. Y., Das, S., Lu, Y., Owyang, C., & Moises, H. C. (2004). Prolactin‐releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex. The Journal of physiology, 561(3), 821-839.‏ Halbreich, U., Kinon, B. J., Gilmore, J. A., & Kahn, L. S. (2003). Elevated prolactin levels in patients with schizophrenia: mechanisms and related adverse effects. Psychoneuroendocrinology, 28, 53-67.‏ Havenith, M. N., Yu, S., Biederlack, J., Chen, N. H., Singer, W., & Nikolić, D. (2011). Synchrony makes neurons fire in sequence, and stimulus properties determine who is ahead. Journal of neuroscience, 31(23), 8570-8584.‏ Hromádka, T., DeWeese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS biology, 6(1), e16.‏ Kesar, A. G. (2014). Effect of prenatal chronic noise exposure on the growth and development of body and brain of chick embryo. International Journal of Applied and Basic Medical Research, 4(1), 3.‏ Kumar, R., & Wadhwa, S. (2014). Effect of prenatal sound stimulation on the morphology of visual thalamic relay nuclei of domestic chick. cortex, 16, 17.‏ Limonta, P., Piva, F., Maggi, R., Dondi, D., Motta, M., & Martini, L. (1986). Morphine stimulates prolactin release in normal but not in castrated male rats. Journal of reproduction and fertility, 76(2), 745-750.‏ Nelson, R.J. (2011). An introduction to behavioral endocrinology. 4th ed. Sinauer Associates. Inc. ISBN: 978-0-87893-620-5 (Hardcover). Popper A.N., Fay R.R. (1980). Comparative studies of hearing in vertebrates. Springer, Berlin Heidelberg New York. Ripley, K. L., & Provine, R. R. (1972). Neural correlates of embryonic motility in the chick. Brain Research, 45(1), 127-134.‏ Sandell, L. L., Tjaden, N. E. B., Barlow, A. J., & Trainor, P. A. (2014). Cochleovestibular nerve development is integrated with migratory neural crest cells. Developmental biology, 385(2), 200-210.‏ Sanyal, T., Kumar, V., Nag, T. C., Jain, S., Sreenivas, V., & Wadhwa, S. (2013). Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks. PLoS One, 8(7), e67347.‏ SAS Institute. (2004). SAS/ETS 9.1 User's Guide. SAS Institute. Scanes, C.G. 2015. Sturkie’s Avian Physiology. Sixth Edition. Academic Press is an imprint of Elsevier. ISBN: 978-0-12-407160-5. Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal?. Nature Reviews Neuroscience, 6(5), 389. Wadhwa, S., Anand, P., & Bhowmick, D. (1999). Quantitative study of plasticity in the auditory nuclei of chick under conditions of prenatal sound attenuation and overstimulation with species specific and music sound stimuli. International journal of developmental neuroscience, 17(3), 239-253.‏ Zendehdel, M. and S. Hassanpour. (2014). Central regulation of food intake in mammals and birds: a review. Neurotransmitter.e251 1: 1-7. Zhang, H., Chen, G., Kuang, H., & Tsien, J. Z. (2013). Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus. PLoS one, 8(11), e79454.‏
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Salwan M. Abdulateef

Firas M. Abdulateef

Ahmed A. Majıd

Hussam H. Nafea

Publication Date December 1, 2018
Published in Issue Year 2018Issue: 3

Cite

APA Abdulateef, S. M., Abdulateef, F. M., Majıd, A. A., Nafea, H. H. (2018). The Influence of Stimulating The Neural Response on Physiological Response in Chicks. The Eurasia Proceedings of Science Technology Engineering and Mathematics(3), 152-158.