Research Article
BibTex RIS Cite

Phase Contrast Enhancement Combined with Dark Channel Prior for Underwater Target Recognition

Year 2018, Issue: 4, 74 - 81, 04.12.2018

Abstract

The
major obstacle to the detection and identification of objects in underwater
images is often due to their poor quality. Underwater images are known to be
strongly degraded by light absorption and scattering. It is therefore very
important to improve the quality of the images to facilitate the objects
detection. For this purpose, we propose to combine a hardware and software
techniques for image quality improvement. The first by using a polarimetric
imaging optical system to reduce the scattering effects when acquiring images.
The second by apply a Dark Channel Prior (DCP) dehazing method to the obtained
polarized images. This approach has the advantage to be fast and efficient,
because it does not require many software processing to improve the image
quality. In this paper we validate our approach by introducing it into a
complete process of target identification based on phase contrast enhancement
and target recognition. Experiments carried out in our laboratory have shown
that this approach greatly improves the target identification.

References

  • Sankpal, S. S., & Deshpande, S. S. (2016). A review on image enhancement and color correction techniques for underwater images. Advances in Computational Sciences and Technology, 9(1), 11-23. Schettini, R., & Corchs, S. (2010). Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP Journal on Advances in Signal Processing, 2010(1), 746052. Lu, H., Li, Y., Zhang, Y., Chen, M., Serikawa, S., & Kim, H. (2017). Underwater optical image processing: a comprehensive review. Mobile networks and applications, 1-8. McGlamery, B. L. (1979, September). A computer model for underwater camera systems. In Proc. SPIE (Vol. 208, pp. 221-231). Ouyang, B., Dalgleish, F. R., Caimi, F. M., Vuorenkoski, A. K., Giddings, T. E., & Shirron, J. J. (2012, June). Image enhancement for underwater pulsed laser line scan imaging system. In Proceedings of SPIE (Vol. 8372, p. 83720R). Treibitz, T., & Schechner, Y. Y. (2009). Active polarization descattering. IEEE transactions on pattern analysis and machine intelligence, 31(3), 385-399. Garcia, R., Nicosevici, T., & Cufí, X. (2002, October). On the way to solve lighting problems in underwater imaging. In OCEANS'02 MTS/IEEE (Vol. 2, pp. 1018-1024). IEEE. Hitam, M. S., Awalludin, E. A., Yussof, W. N. J. H. W., & Bachok, Z. (2013, January). Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In Computer Applications Technology (ICCAT), 2013 International Conference on (pp. 1-5). IEEE Ancuti, C., Ancuti, C. O., Haber, T., & Bekaert, P. (2012, June). Enhancing underwater images and videos by fusion. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on(pp. 81-88). IEEE. Bazeille, S., Quidu, I., Jaulin, L., & Malkasse, J. P. (2006, October). Automatic underwater image pre-processing. In CMM'06 (p. xx). He, K., Sun, J., & Tang, X. (2011). Single image haze removal using dark channel prior. IEEE transactions on pattern analysis and machine intelligence, 33(12), 2341-2353. Legris, M., Lebart, K., Fohanno, F., & Zerr, B. (2003). Les capteurs d’imagerie en robotique sous-marine: tendances actuelles et futures. Traitement du signal, 20(2), 137-164. VOSS, Kenneth J. et FRY, Edward S. Measurement of the Mueller matrix for ocean water. Applied optics, 1984, vol. 23, no 23, p. 4427-4439. Kouzoubov, A., Brennan, M. J., & Thomas, J. C. (1998). Treatment of polarization in laser remote sensing of ocean water. Applied optics, 37(18), 3873-3885. Schechner, Y. Y., & Karpel, N. (2005). Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering, 30(3), 570-587. Dubreuil, M., Delrot, P., Leonard, I., Alfalou, A., Brosseau, C., & Dogariu, A. (2013). Exploring underwater target detection by imaging polarimetry and correlation techniques. Applied optics, 52(5), 997-1005. Leonard, I., Alfalou, A., Zallat, J., Lallement, A., & Brosseau, C. (2013, October). Sensitive test for object identification based on polarization imaging and correlation. In Frontiers in Optics (pp. FTh3D-4). Optical Society of America. Brosseau, C. (1998). Fundamentals of polarized light: a statistical optics approach. Wiley-Interscience. Mullen, L., Cochenour, B., Rabinovich, W., Mahon, R., & Muth, J. (2009). Backscatter suppression for underwater modulating retroreflector links using polarization discrimination. Applied optics, 48(2), 328-337. HE, Kaiming, SUN, Jian, et TANG, Xiaoou. Guided image filtering. IEEE transactions on pattern analysis and machine intelligence, 2013, vol. 35, no 6, p. 1397-1409. Piederrière, Y., Boulvert, F., Cariou, J., Le Jeune, B., Guern, Y., & Le Brun, G. (2005). Backscattered speckle size as a function of polarization: influence of particle-size and-concentration. Optics express, 13(13), 5030-5039. http://www.sealife-cameras.com/fr/cam%C3%A9ras/dc1400-pro-vid%C3%A9o Miller, P. C., & Caprari, R. S. (1999). Demonstration of improved automatic target-recognition performance by moment analysis of correlation peaks. Applied optics, 38(8), 1325-1331. Yu, F. T., & Gregory, D. A. (1996). Optical pattern recognition: architectures and techniques. Proceedings of the IEEE, 84(5), 733-752. VLC: Lugt, A. V. (1964). Signal detection by complex spatial filtering. IEEE Transactions on information theory, 10(2), 139-145. Jtc : Weaver, C. S., & Goodman, J. W. (1966). A technique for optically convolving two functions. Applied optics, 5(7), 1248-1249 Alfalou, A., & Brosseau, C. (2010). Understanding correlation techniques for face recognition: from basics to applications. In Face Recognition. InTech. Yelleswarapu, C. S., Kothapalli, S. R., & Rao, D. V. G. L. N. (2008). Optical Fourier techniques for medical image processing and phase contrast imaging. Optics communications, 281(7), 1876-1888.
Year 2018, Issue: 4, 74 - 81, 04.12.2018

Abstract

References

  • Sankpal, S. S., & Deshpande, S. S. (2016). A review on image enhancement and color correction techniques for underwater images. Advances in Computational Sciences and Technology, 9(1), 11-23. Schettini, R., & Corchs, S. (2010). Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP Journal on Advances in Signal Processing, 2010(1), 746052. Lu, H., Li, Y., Zhang, Y., Chen, M., Serikawa, S., & Kim, H. (2017). Underwater optical image processing: a comprehensive review. Mobile networks and applications, 1-8. McGlamery, B. L. (1979, September). A computer model for underwater camera systems. In Proc. SPIE (Vol. 208, pp. 221-231). Ouyang, B., Dalgleish, F. R., Caimi, F. M., Vuorenkoski, A. K., Giddings, T. E., & Shirron, J. J. (2012, June). Image enhancement for underwater pulsed laser line scan imaging system. In Proceedings of SPIE (Vol. 8372, p. 83720R). Treibitz, T., & Schechner, Y. Y. (2009). Active polarization descattering. IEEE transactions on pattern analysis and machine intelligence, 31(3), 385-399. Garcia, R., Nicosevici, T., & Cufí, X. (2002, October). On the way to solve lighting problems in underwater imaging. In OCEANS'02 MTS/IEEE (Vol. 2, pp. 1018-1024). IEEE. Hitam, M. S., Awalludin, E. A., Yussof, W. N. J. H. W., & Bachok, Z. (2013, January). Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In Computer Applications Technology (ICCAT), 2013 International Conference on (pp. 1-5). IEEE Ancuti, C., Ancuti, C. O., Haber, T., & Bekaert, P. (2012, June). Enhancing underwater images and videos by fusion. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on(pp. 81-88). IEEE. Bazeille, S., Quidu, I., Jaulin, L., & Malkasse, J. P. (2006, October). Automatic underwater image pre-processing. In CMM'06 (p. xx). He, K., Sun, J., & Tang, X. (2011). Single image haze removal using dark channel prior. IEEE transactions on pattern analysis and machine intelligence, 33(12), 2341-2353. Legris, M., Lebart, K., Fohanno, F., & Zerr, B. (2003). Les capteurs d’imagerie en robotique sous-marine: tendances actuelles et futures. Traitement du signal, 20(2), 137-164. VOSS, Kenneth J. et FRY, Edward S. Measurement of the Mueller matrix for ocean water. Applied optics, 1984, vol. 23, no 23, p. 4427-4439. Kouzoubov, A., Brennan, M. J., & Thomas, J. C. (1998). Treatment of polarization in laser remote sensing of ocean water. Applied optics, 37(18), 3873-3885. Schechner, Y. Y., & Karpel, N. (2005). Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering, 30(3), 570-587. Dubreuil, M., Delrot, P., Leonard, I., Alfalou, A., Brosseau, C., & Dogariu, A. (2013). Exploring underwater target detection by imaging polarimetry and correlation techniques. Applied optics, 52(5), 997-1005. Leonard, I., Alfalou, A., Zallat, J., Lallement, A., & Brosseau, C. (2013, October). Sensitive test for object identification based on polarization imaging and correlation. In Frontiers in Optics (pp. FTh3D-4). Optical Society of America. Brosseau, C. (1998). Fundamentals of polarized light: a statistical optics approach. Wiley-Interscience. Mullen, L., Cochenour, B., Rabinovich, W., Mahon, R., & Muth, J. (2009). Backscatter suppression for underwater modulating retroreflector links using polarization discrimination. Applied optics, 48(2), 328-337. HE, Kaiming, SUN, Jian, et TANG, Xiaoou. Guided image filtering. IEEE transactions on pattern analysis and machine intelligence, 2013, vol. 35, no 6, p. 1397-1409. Piederrière, Y., Boulvert, F., Cariou, J., Le Jeune, B., Guern, Y., & Le Brun, G. (2005). Backscattered speckle size as a function of polarization: influence of particle-size and-concentration. Optics express, 13(13), 5030-5039. http://www.sealife-cameras.com/fr/cam%C3%A9ras/dc1400-pro-vid%C3%A9o Miller, P. C., & Caprari, R. S. (1999). Demonstration of improved automatic target-recognition performance by moment analysis of correlation peaks. Applied optics, 38(8), 1325-1331. Yu, F. T., & Gregory, D. A. (1996). Optical pattern recognition: architectures and techniques. Proceedings of the IEEE, 84(5), 733-752. VLC: Lugt, A. V. (1964). Signal detection by complex spatial filtering. IEEE Transactions on information theory, 10(2), 139-145. Jtc : Weaver, C. S., & Goodman, J. W. (1966). A technique for optically convolving two functions. Applied optics, 5(7), 1248-1249 Alfalou, A., & Brosseau, C. (2010). Understanding correlation techniques for face recognition: from basics to applications. In Face Recognition. InTech. Yelleswarapu, C. S., Kothapalli, S. R., & Rao, D. V. G. L. N. (2008). Optical Fourier techniques for medical image processing and phase contrast imaging. Optics communications, 281(7), 1876-1888.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Khadidja Ould Amer

Marwa Elbouz

Ayman Alfalou

Publication Date December 4, 2018
Published in Issue Year 2018Issue: 4

Cite

APA Amer, K. O., Elbouz, M., & Alfalou, A. (2018). Phase Contrast Enhancement Combined with Dark Channel Prior for Underwater Target Recognition. The Eurasia Proceedings of Science Technology Engineering and Mathematics(4), 74-81.