Theoretical Investigation of Nmr, Conformational, Vibrational and Electronic Structure of 3-Bromo-4-(2-Pyridyl) Thiophene
Year 2019,
Volume: 6 , 126 - 130, 25.07.2019
Guventurk Ugurlu
Abstract
Compounds
containing thiophene and pyridine rings very much attention due to their
biological activity. The molecular geometry, vibration frequencies, dipole
moment (μ), polarizability (α), hyperpolarizability (β) of
3-Bromo-4-(2-pyridyl) thiophene have been calculated at ab initio Hartree Fock
(HF) and Density Functional Theory (DFT / B3LYP) with 6-311++G (d, p) basis
set. The highest occupied molecular orbital (HOMO), the lowest unoccupied
molecular orbital (LUMO) of title molecule has been computed and their
respective gap (ΔEg) have been examined. The gauge independent atomic orbital
(GIAO) 1H- and 13C-NMR chemical shifts values of studied
molecule in the ground state in both gas phase and in solution of chloroform
and dimethyl sulfoxide have been
investigated using the HF and DFT/B3LYP employing different basis sets. In
addition, the potential energy curve of the molecule as a function of the dihedral
angle (N-C3-C6-C7) have been carried out using the 6-31G basis set in both
methods. The results of vibrational parameters were analyzed by VEDA 4
software. The 1H chemical shifts values of the molecule, which were calculated
by both methods, were compared with the data in the literature and there was a
good agreement between the structural parameters.
References
-
Abdel-Rahman, S. A., El-Gohary. N, S., El-Bendary, E. R., El-Ashry, S. M., Shaaban, M. I. (2017). Synthesis, antimicrobial, antiquorum-sensing, antitumor and cytotoxic activities of new series of cyclopenta(hepta)[b]thiophene and fused cyclohepta[b]thiophene analogs, Eur. J. Med. Chem. 140; 200-211.
Amr, A. E., Sherif, M. H., Assay, M. G., Al-Omar, M. A., Ragab, I. (2010). Antiarrhythmic, serotonin antagonist and antianxiety activities of novel substituted thiophene derivatives synthesized from 2-amino-4,5,6,7-tetrahydroN-phenylbenzo[b]thiophene-3-carboxamide. Eur. J. Med. Chem. 45; 5935-5942.
Başoglu, A., Dirkmann, S., Golpayegani, N. Z., Silke Vortherms, S., Tentrop, J., Nowottnik, D., Prinz, H., Frohlich, R., Müller, K. (2017). Structureactivity relationships of the tricyclic quinone skeleton and the oxadiazole substituent. Eur. J. Med. Chem. 134; 119-132.
Becke, A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100
Becke, A. D., 1993. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys., 98 (7): 5648-5652
Dennington, R., Keith T., Millam, J. (2009). Semichem Inc., GaussView, Version 5, Shawnee Mission KS,
Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., Pople, J.A, (1982). Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. Chem. Phys, 77 3654-3665
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida,M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Vreven T J, Peralta J E, Ogliaro F, Bearpark M, Heyd J. J, Brothers E, Kudin N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene,M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C J, Ochterski W, Martin L R, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, 2009. Gaussian Inc., (Wallingford, CT).
Jose, L., Gonzalez, J. L., Stephens, C E, Wenzler T, Brun R, Tanious, F.A., Wilson, W. D., Barszcz, T., (2007). Werbovetz, K.A.; Boykin, D.W. Synthesis and antiparasitic evaluation of bis2,5-[4-guanidinophenyl]thiophenes. Eur. J. Med. Chem. 42; 552-557.
Khalil A M, Berghot M A, Gouda M A (2009). Synthesis and antibacterial activity of some new thiazole and thiophene derivatives. Eur. J. Med. Chem. 44; 4434-4440.
Kulandasamy, R., Adhikari, A. V., Stables, J. P. (2009). A new class of anticonvulsants possessing 6 Hz activity: 3,4-Dialkyloxy thiophene bishydrazones. Eur. J. Med. Chem. 44; 4376-4384.
Krishnan, R., Binkley, J. S., Seeger, R. and Pople, J. A, (1980). Self-consistent molecular-orbital methods. 20. basis set for correlated wave-functions. J. Chem.Phys, 72: 650–654.
McLean, A.D., Chandler, G.S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J Chem Phys, 72:5639–5648
Lee, C. T., Yang, W. T., Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789.
Mohareb, R. M., Mayssoune, Y., Zaki, M, Y., Nermeen, S., Abbas, N. S. (2015) Synthesis, antiinflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids. 98; 80-91.
Rassolov, V-A., Ratner, M-A., Pople ,J-A., Redfern, P-C., Curtiss ,L-A., (2001). 6–31G* basis set for third-row atoms. J Comp Chem., 22:976–984.
Moller, C., Plesset, M. S. (1934). Note on an approximation treatment for many- electron systems. Phys. Rev., 46 618-622.
Sowmya, D. V., Teja, G. L., Padmaja, A., Prasad, V. K., Padmavathi, V, (2018) Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem. 143; 891-898.
Viswanatha, G. L, Priyadarshini, B. J., Krishnadas, N., Janardhanan, S., Rangappa, S., Hanumanthappa, S. (2012). Synthesis and antihistaminic activity of 3H-benzo[4,5]thieno[2,3d][1,2,3] triazin-4-ones. Saudi Pharm. J. 20; 45-52.