Research Article
BibTex RIS Cite

Synthesis of Triazole-Coupled Quinoline-Based Fluorescent Sensor

Year 2019, Volume: 7 , 58 - 62, 24.11.2019

Abstract

Fluorescent sensor is one of the most important chemical sensors and is a powerful tool for imaging target molecules and ions in the living organism. Because it has high sensitivity and simultaneous imaging. In this work, fluorescence chemosensor was designed based on ionophore-bridge-fluorophore approach. In the structure of the designed chemosensor, anthracene unit was used as fluorophore. The receptoric hydroxy quinoline group to interact with the metal ion were incorporated into the structure by the triazole bridge which has high coordination properties. Detection of a specific type of a metal is very important in terms of biouse of the related compound. In addition to the synthetic approach, the metal coordination propertiess of the novel chemosensors will be investigated theoretically at the level of Density Functional theory with the application of B3LYP/6-31++G(d,p), which is a combination of hibrit exchange function and basis set.

References

  • Krämer, R. (1998). Fluorescent Chemosensors for Cu2+ Ions: Fast, Selective, and Highly Sensitive. Angew. Chem. Int. Ed. 37, 772–773. Uauy, R., Olivares, M., Gonzalez, M. (1998). Essentiality of copper in humans. Am. J. Clin. Nutr. 67, 952–959. de Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., Rice, T. E.(1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 97, 1515–1566. Czarnik, A.W. (1992). Fluorescent Chemosensors for Ion and Molecule Recognition, first ed., A.C.S, Washington. Chen, Y., Wan, L., Yu, X., Li, W., Bian, Y. and Jiang, J. (2011). Rational Design and Synthesis for Versatile FRET Ratiometric Sensor for Hg2+ and Fe2+: A Flexible 8-hydroxyquinoline Benzoate Linked Bodipy-Porphyrin Dyad. Org. Lett., 13, 5774-5777. Jotterand, N., Pearce, D. A. and Imperiali, B. (2001). Asymmetric Synthesis of a New 8-Hydroxyquinoline-Derived α-Amino Acid and Its Incorporation in a Peptidylsensor for Divalent Zinc. J. Org. Chem., 66, 3224-3228. Zhao, Y., Lin, Z., Liao, H., Duan, C. and Meng, Q. (2006). A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg. Chem. Commun., 9, 966-968. Li, Z., Xi, P., Huang, L., Xie, G., Shi, Y., Liu, H., Xu, M., Chen, F. and Zeng, Z. (2011). A highly selective fluorescent chemosensor for Cd(II) based on 8-hydroxyquinoline platform. Inorg. Chem. Commun., 2011, 14, 1241-1244. Tian, H., Li, B., Wang, H., Li, Y., Wang, J., Zhao, S., Zhu, J., Wang, Q., Liu, W., Yaoa, X. and Tang, Y. (2011). A nanocontainer that releases a fluorescence sensor for cadmium ions in water and its biological applications. J. Mater. Chem., 21, 10298-10304. Huisgen, R. (1984). 1,3-Dipolar Cycloaddition–Introduction, Survey, Mechanism. In 1,3-Dipolar Cycloaddition Chemistry. Padwa, A., Ed. Wiley: New York. Agalave, S. G., Maujan, S. R., Pore, V. S. (2011). Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 6, 2696–2718. Krivopalov, V. P., Shkurko, O. P. (2005), 1,2,3-Triazole and its derivatives. Development of methods for the formation of the triazole ring. Russian Chem. Rev., 74, 339–379. Yet, L. (2004). Progress in Heterocyclic Chemistry; Elsevier, Oxford, UK. Katritzky, A. R., Zhang, Y., Singh, S. K. (2003). 1,2,3-Triazole formation under mild conditions via 1,3-dipolar cycloaddition of acetylenes with azides. Heterocycles, 60, 1225–1239. Seo, T. S., Li, Z., Ruparel, H., Lu, J. (2003). Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J. Org. Chem., 68, 609–612. Sivakumar, K., Xie, F., Cash, B. M., Long, S., Barnhill, H. N. (2004). A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 6, 4603–4606. Dondoni, A., Marra, A. (2006). C-Glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers. J. Org. Chem., 71, 7546–7557. Hota, S., Kashyap, S. (2006). “Click chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates. J. Org. Chem. 71, 364–367.
Year 2019, Volume: 7 , 58 - 62, 24.11.2019

Abstract

References

  • Krämer, R. (1998). Fluorescent Chemosensors for Cu2+ Ions: Fast, Selective, and Highly Sensitive. Angew. Chem. Int. Ed. 37, 772–773. Uauy, R., Olivares, M., Gonzalez, M. (1998). Essentiality of copper in humans. Am. J. Clin. Nutr. 67, 952–959. de Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., Rice, T. E.(1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 97, 1515–1566. Czarnik, A.W. (1992). Fluorescent Chemosensors for Ion and Molecule Recognition, first ed., A.C.S, Washington. Chen, Y., Wan, L., Yu, X., Li, W., Bian, Y. and Jiang, J. (2011). Rational Design and Synthesis for Versatile FRET Ratiometric Sensor for Hg2+ and Fe2+: A Flexible 8-hydroxyquinoline Benzoate Linked Bodipy-Porphyrin Dyad. Org. Lett., 13, 5774-5777. Jotterand, N., Pearce, D. A. and Imperiali, B. (2001). Asymmetric Synthesis of a New 8-Hydroxyquinoline-Derived α-Amino Acid and Its Incorporation in a Peptidylsensor for Divalent Zinc. J. Org. Chem., 66, 3224-3228. Zhao, Y., Lin, Z., Liao, H., Duan, C. and Meng, Q. (2006). A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg. Chem. Commun., 9, 966-968. Li, Z., Xi, P., Huang, L., Xie, G., Shi, Y., Liu, H., Xu, M., Chen, F. and Zeng, Z. (2011). A highly selective fluorescent chemosensor for Cd(II) based on 8-hydroxyquinoline platform. Inorg. Chem. Commun., 2011, 14, 1241-1244. Tian, H., Li, B., Wang, H., Li, Y., Wang, J., Zhao, S., Zhu, J., Wang, Q., Liu, W., Yaoa, X. and Tang, Y. (2011). A nanocontainer that releases a fluorescence sensor for cadmium ions in water and its biological applications. J. Mater. Chem., 21, 10298-10304. Huisgen, R. (1984). 1,3-Dipolar Cycloaddition–Introduction, Survey, Mechanism. In 1,3-Dipolar Cycloaddition Chemistry. Padwa, A., Ed. Wiley: New York. Agalave, S. G., Maujan, S. R., Pore, V. S. (2011). Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 6, 2696–2718. Krivopalov, V. P., Shkurko, O. P. (2005), 1,2,3-Triazole and its derivatives. Development of methods for the formation of the triazole ring. Russian Chem. Rev., 74, 339–379. Yet, L. (2004). Progress in Heterocyclic Chemistry; Elsevier, Oxford, UK. Katritzky, A. R., Zhang, Y., Singh, S. K. (2003). 1,2,3-Triazole formation under mild conditions via 1,3-dipolar cycloaddition of acetylenes with azides. Heterocycles, 60, 1225–1239. Seo, T. S., Li, Z., Ruparel, H., Lu, J. (2003). Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J. Org. Chem., 68, 609–612. Sivakumar, K., Xie, F., Cash, B. M., Long, S., Barnhill, H. N. (2004). A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 6, 4603–4606. Dondoni, A., Marra, A. (2006). C-Glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers. J. Org. Chem., 71, 7546–7557. Hota, S., Kashyap, S. (2006). “Click chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates. J. Org. Chem. 71, 364–367.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aysegul Gumus

Selcuk Gumus

Publication Date November 24, 2019
Published in Issue Year 2019Volume: 7

Cite

APA Gumus, A., & Gumus, S. (2019). Synthesis of Triazole-Coupled Quinoline-Based Fluorescent Sensor. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 7, 58-62.