Research Article
BibTex RIS Cite

Synthesis of Novel Triazole-Linked Schiff Base Derivative

Year 2019, Volume: 7 , 87 - 92, 24.11.2019

Abstract

The nitrogen atom of azomethine C=N double bond in Schiff base exhibits a strong affinity for transition metal ions. Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions. In this work, fluorescent Schiff base derivatives were synthesized by reacting triazole-linked salicylaldehyde derivative with aminopyrene and aminoanthracene, which are very good fluorophores. These compounds have high potential to be used as metal chemosensors. Detection of a specific type of a metal is very important in terms of biouse of the related compound. In order to determine the sensitivity of the novel compounds, a series of spectroscopic measurements were caried out upon synthesis. Moreover, the metal coordination characteristics of the new compounds were also be investigated theoretically at the level of Density Functional theory with the application of B3LYP/6-31++G(d,p), which is a combination of hybrid exchange function and basis set.

References

  • A.P. de Silva, H.Q. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev. 97 (1997) 1515-1566. R. Hu, J. Feng, D.H. Hu, S.Q. Wang, S. Li, Y. Li, G.Q. Yang, A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes, Angrew. Chem., Int. Ed. 49 (2010) 4915-4918. J. Fan, M. Hu, P. Zhan, X. Peng, Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing, Chem. Soc. Rev. 42 (2013) 29-43. Y. Yang, Q. Zhao, W. Feng, F. Li, Luminescent Chemodosimeters for Bioimaging, Chem. Rev. 113 (2013) 192-270. X. Lim, The Nanoscale Rainbow, Nature. 531 (2016) 26. M. Gao, B.Z. Tang, Fluorescent Sensors Based on Aggregetion-Induced Emission: Recent advances and perspectives, ACS Sens. 2 (2017) 1382-1399. G.B. Demirel, B. Daglar, M. Bayindir, Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films, Chem Commun. 55 (2013) 6140-6142. (a) L. Ding, Y. Fang, Chemically assembled monolayers of fluorophores as chemical sensing materials, Chem Soc Rev. 11 (2010) 4258-4273. (b) G. Sivaraman, A.Gulyani, Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem rev., 357 (2018) 50-104 S. Shanmugaraju, H. Jadhav, R. Karthik, P. S. Mukherjee, Electron rich supramolecular polymers as fluorescent sensors for nitroaromatics, RSC Adv. 15 (2013) 4940-4950. R. Pandey, L. Reddy, S. Ishihara, A. Dhir, V. Krishnan, Conformation induced discrimination between picric acid and nitro derivatives/anions with a Cu-pyrene array: the first decision making photonic device , RSC Adv. 3 (2013) 21365-21368. D.M. Epstein, S. Choudhary, M.R. Churchill, K.M. Keil, A.V. Eliseev, J.R. Morrow, Chloroform-Soluble Schiff-Base Zn(II) or Cd(II) Complexes from a Dynamic Combinatorial Library, Inorg. Chem. 40 (2001) 1591–1596. V.C. Da Silveira, J.S. Luz, C.C. Oliveira, I. Graziani, M.R. Ciriolo, A.M. Ferreira, Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity, J. Inorg. Biochem. 102 (2008) 1090–1103. Y. Li, Z.Y. Yang, DNA binding affinity and antioxidative activity of copper(II) and zinc(II) complexes with a novel hesperetin Schiff base ligand, Inorg. Chim. Acta 362 (2009) 4823–4831. S. Kasselouri, A. Garoufis, A. Katehanakis, G. Kalkanis, S.P. Perlepes, N. Hadjiliadis, 1:1 Metal complexes of 2-(2′-pyridyl)quinoxaline, a ligand unexpectedly formed by the reaction between 2-acetylpyridine and 1,2-phenylenediamine, Inorg. Chim. Acta 207 (1993) 255–258. G. A. Morris, H. Zhou, C.L. Stern, S.T. Nguyen, A General High-Yield Route to Bis(salicylaldimine) Zinc(II) Complexes:  Application to the Synthesis of Pyridine-Modified Salen-Type Zinc(II) Complexes, Inorg. Chem. 40 (2001) 3222–3227. S. Esvaran, A. V.,Adhikari, N. S. Shetty, Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety, Eur. J. Med. Chem. 44 (2009) 4637–4647. S. S. Kumar, H. P. Kavitha, Synthesis and biological applications of triazole derivatives, Mini-Rev. Org. Chem. 10 (2013) 40–65. C. Radhika, A. Venkatesham, M. Sarangapani, Synthesis and antidepressant activity of disubstituted-5-aryl-1,2,4-triazoles, Med. Chem. Res. 31 (2012) 3509–3513. T. Plech, J. J. Luszczki, M. Wujec, J. Flieger, M. Pizon, Synthesis, characterization and preliminary anticonvulsant evaluation of some 4-alkyl-1,2,4-triazoles, Eur. J. Med. Chem. 60 (2013) 208–215. P. M. Chaudhary, S. R. Chavan, F. Shirazi, M. Razdan, P. Nimkar, S. P. Maybhate, A. P. Likhite, R. Gonnade, B. G. Hazara, S. R. Deshpande, Exploration of click reaction for the synthesis of modified nucleosides as chitin synthase inhibitors, Bioorg. Med. Chem. Lett. 17 (2009) 2433–2440. J. P. Zhou, H. B. Zhang, H. Qian, L. Lin, W. L. Huang, S. J. Ni, Synthesis and biological evaluation of aromatase inhibitors, Lett. Drug Design Discov. 6 (2009) 181–185. B. S. Holla, N. S. Mahhalinga, Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles, Eur. J. Med. Chem. 40 (2005) 1173–1178. M. A. Elmorsi, A. M. Hassanein, Corrosion inhibition of copper by heterocyclic compounds, Corros. Sci. 41 (1999) 2337-2352. D. K. Kim, J. Kim, H. J. Park, Synthesis and biological evaluation of novel 2-pyridinyl-[1,2,3]triazoles as inhibitors of transforming growth factor beta 1 type 1 receptor, J. Bioorg. Med. Chem. Lett. 14 (2004) 2401–2405. T. S. Seo, Z. Li, H. Ruparel, J. Lu, Click chemistry to construct fluorescent oligonucleotides for DNA sequencing, J. Org. Chem. 68 (2003) 609–612. K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, A Fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes, Org. Lett. 6 (2004) 4603–4606. A. Dondoni, A. Marra, “Click chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates, J. Org. Chem. 71 (2006) 364–367. J. Chan, S. C. Dodani and C. J. Chang, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging, Nature Chemistry 4 (2012) 973-984.
Year 2019, Volume: 7 , 87 - 92, 24.11.2019

Abstract

References

  • A.P. de Silva, H.Q. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev. 97 (1997) 1515-1566. R. Hu, J. Feng, D.H. Hu, S.Q. Wang, S. Li, Y. Li, G.Q. Yang, A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes, Angrew. Chem., Int. Ed. 49 (2010) 4915-4918. J. Fan, M. Hu, P. Zhan, X. Peng, Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing, Chem. Soc. Rev. 42 (2013) 29-43. Y. Yang, Q. Zhao, W. Feng, F. Li, Luminescent Chemodosimeters for Bioimaging, Chem. Rev. 113 (2013) 192-270. X. Lim, The Nanoscale Rainbow, Nature. 531 (2016) 26. M. Gao, B.Z. Tang, Fluorescent Sensors Based on Aggregetion-Induced Emission: Recent advances and perspectives, ACS Sens. 2 (2017) 1382-1399. G.B. Demirel, B. Daglar, M. Bayindir, Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films, Chem Commun. 55 (2013) 6140-6142. (a) L. Ding, Y. Fang, Chemically assembled monolayers of fluorophores as chemical sensing materials, Chem Soc Rev. 11 (2010) 4258-4273. (b) G. Sivaraman, A.Gulyani, Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem rev., 357 (2018) 50-104 S. Shanmugaraju, H. Jadhav, R. Karthik, P. S. Mukherjee, Electron rich supramolecular polymers as fluorescent sensors for nitroaromatics, RSC Adv. 15 (2013) 4940-4950. R. Pandey, L. Reddy, S. Ishihara, A. Dhir, V. Krishnan, Conformation induced discrimination between picric acid and nitro derivatives/anions with a Cu-pyrene array: the first decision making photonic device , RSC Adv. 3 (2013) 21365-21368. D.M. Epstein, S. Choudhary, M.R. Churchill, K.M. Keil, A.V. Eliseev, J.R. Morrow, Chloroform-Soluble Schiff-Base Zn(II) or Cd(II) Complexes from a Dynamic Combinatorial Library, Inorg. Chem. 40 (2001) 1591–1596. V.C. Da Silveira, J.S. Luz, C.C. Oliveira, I. Graziani, M.R. Ciriolo, A.M. Ferreira, Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity, J. Inorg. Biochem. 102 (2008) 1090–1103. Y. Li, Z.Y. Yang, DNA binding affinity and antioxidative activity of copper(II) and zinc(II) complexes with a novel hesperetin Schiff base ligand, Inorg. Chim. Acta 362 (2009) 4823–4831. S. Kasselouri, A. Garoufis, A. Katehanakis, G. Kalkanis, S.P. Perlepes, N. Hadjiliadis, 1:1 Metal complexes of 2-(2′-pyridyl)quinoxaline, a ligand unexpectedly formed by the reaction between 2-acetylpyridine and 1,2-phenylenediamine, Inorg. Chim. Acta 207 (1993) 255–258. G. A. Morris, H. Zhou, C.L. Stern, S.T. Nguyen, A General High-Yield Route to Bis(salicylaldimine) Zinc(II) Complexes:  Application to the Synthesis of Pyridine-Modified Salen-Type Zinc(II) Complexes, Inorg. Chem. 40 (2001) 3222–3227. S. Esvaran, A. V.,Adhikari, N. S. Shetty, Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety, Eur. J. Med. Chem. 44 (2009) 4637–4647. S. S. Kumar, H. P. Kavitha, Synthesis and biological applications of triazole derivatives, Mini-Rev. Org. Chem. 10 (2013) 40–65. C. Radhika, A. Venkatesham, M. Sarangapani, Synthesis and antidepressant activity of disubstituted-5-aryl-1,2,4-triazoles, Med. Chem. Res. 31 (2012) 3509–3513. T. Plech, J. J. Luszczki, M. Wujec, J. Flieger, M. Pizon, Synthesis, characterization and preliminary anticonvulsant evaluation of some 4-alkyl-1,2,4-triazoles, Eur. J. Med. Chem. 60 (2013) 208–215. P. M. Chaudhary, S. R. Chavan, F. Shirazi, M. Razdan, P. Nimkar, S. P. Maybhate, A. P. Likhite, R. Gonnade, B. G. Hazara, S. R. Deshpande, Exploration of click reaction for the synthesis of modified nucleosides as chitin synthase inhibitors, Bioorg. Med. Chem. Lett. 17 (2009) 2433–2440. J. P. Zhou, H. B. Zhang, H. Qian, L. Lin, W. L. Huang, S. J. Ni, Synthesis and biological evaluation of aromatase inhibitors, Lett. Drug Design Discov. 6 (2009) 181–185. B. S. Holla, N. S. Mahhalinga, Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles, Eur. J. Med. Chem. 40 (2005) 1173–1178. M. A. Elmorsi, A. M. Hassanein, Corrosion inhibition of copper by heterocyclic compounds, Corros. Sci. 41 (1999) 2337-2352. D. K. Kim, J. Kim, H. J. Park, Synthesis and biological evaluation of novel 2-pyridinyl-[1,2,3]triazoles as inhibitors of transforming growth factor beta 1 type 1 receptor, J. Bioorg. Med. Chem. Lett. 14 (2004) 2401–2405. T. S. Seo, Z. Li, H. Ruparel, J. Lu, Click chemistry to construct fluorescent oligonucleotides for DNA sequencing, J. Org. Chem. 68 (2003) 609–612. K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, A Fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes, Org. Lett. 6 (2004) 4603–4606. A. Dondoni, A. Marra, “Click chemistry” inspired synthesis of pseudo-oligosaccharides and amino acid glycoconjugates, J. Org. Chem. 71 (2006) 364–367. J. Chan, S. C. Dodani and C. J. Chang, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging, Nature Chemistry 4 (2012) 973-984.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aysegul Gumus

Selcuk Gumus

Publication Date November 24, 2019
Published in Issue Year 2019Volume: 7

Cite

APA Gumus, A., & Gumus, S. (2019). Synthesis of Novel Triazole-Linked Schiff Base Derivative. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 7, 87-92.