Research Article
BibTex RIS Cite
Year 2019, Volume: 8 , 12 - 19, 10.12.2019

Abstract

References

  • Alfaro-Núñez, A., Jensen, M.P., & Abreu-Grobois, F.A. (2015). Does polyandry really pay off?: the effects of multiple mating and number of fathers on morphological traits and survival in clutches of nesting green turtles at Tortuguero. PeerJ, 3, p. e1112. Arden, W.R., & Kapuscinski, A.R. (2002). Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 35-49. Baer, B., & Schmid-Hempel, P. (1999). Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature, 397, 151-154. Bjorndal, K.A., Meylan, A.B., & Turner, B.J. (1983). Sea turtles nesting at Melbourne Beach, Florida, I. Size, growth and reproductive biology. Biological Conservation, 26, 65-77. Bollmer, J.L., Irwin, M.E., Rieder, J.P., & Parker, P.G. (1999). Multiple paternity in loggerhead turtle clutches. Copeia, 1999(2), 475-478. Bull, J.J. (1980). Sex determination in reptiles. Quarterly Review of Biology, 55, 3-20. Casale, P. (2015). Caretta caretta (Mediterranean Subpopulation). The IUCN Red List of Threatened Species 2015: e.T83644804A83646294. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T83644804A83646294.en. Casale, P., & Tucker, A.D. (2015). Caretta caretta. The IUCN Red List of Threatened Species 2015: e.T3897A83157651. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T3897A83157651.en. Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. Chassin-Noria, O., Macip-Ríos, R., Dutton, P.H., & Oyama, K. (2017). Multiple paternity in the East Pacific green turtle (Chelonia mydas) from the Pacific coast of Mexico. Journal of Experimental Marine Biology and Ecology, 495, 43-47. Crim, J.L., Spotila, L.D., Spotila, J.R., O’Connor, M., Reina, R., Williams, C.J., & Paladino, F.V. (2002). The leatherback turtle, Dermochelys coriacea, exhibits both polyandry and polygyny. Molecular Ecology, 11(10), 2097-2106. Duran, N., Dunbar, S.G., Escobar III, R.A., Standish, T.G. (2015). High frequency of multiple paternity in a solitary population of olive ridley sea turtles in Honduras. Journal of Experimental Marine Biology and Ecology, 463, 63-71. Ekanayake, E.M.L., Kapurusinghe, T., Saman, M.M., Rathnakumara, D.S., Samaraweera, P., Ranawana, K.B., & Rajakaruna, R.S. (2013). Paternity of green turtle (Chelonia mydas) clutches laid at Kosgoda, Sri Lanka. Herpetological Conservation and Biology, 8(1), 27-36. Figgener, C., Chacón-Chaverri, D., Jensen, M.P., & Feldhaar, H. (2016). Paternity re-visited in a recovering population of Caribbean leatherback turtles (Dermochelys coriacea). Journal of Experimental Marine Biology and Ecology, 475, 114-123. FitzSimmons, N. (1998). Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology, 7(5), 575-584. Gaos, A.R., Lewison, R.L., Liles, M.J., Henriquez, A., Chavarría, S., Yañez, I.L., Stewart, K., Frey, A., Jones, T.T., & Dutton, P.H. (2018). Prevalence of polygyny in a critically endangered marine turtle population. Journal of Experimental Marine Biology and Ecology, 506, 91-99. González-Garza, B.I., Stow, A., Sánchez-Teyer, L.F., & Zapata-Párez, O. (2015). Genetic variation, multiple paternity, and measures of reproductive success in the critically endangered hawksbill turtle (Eretmochelys imbricata). Ecology and Evolution, 5, 5758-5769. Hamann, M., Godfrey, M.H., Seminoff, J.A., Arthur, K.E., Barata, P.C.R., Bjorndal, K.A., Bolten, A.B., Broderick, A.C., Campbell, L.M., Carreras, C., et al. (2010). Global research priorities for sea turtles: informing management and conservation in the twenty-first century. Endangered Species Research, 11, 245-269. Hamann, M., Limpus, C.J., & Owens, D.W. (2003). Reproductive cycles of male and females. In: Lutz, P.L., Musick, J.A., & Wyneken, J. (Eds.), The Biology of Sea Turtles 2. CRC Press Inc., Boca Raton, FL, pp. 135-161. Harry, J.L., & Briscoe, D.A. (1988). Multiple paternity in the loggerhead turtle (Caretta caretta). Journal of Heredity, 79(2), 96-99. Hirayama, R. (1998). Oldest known sea turtle. Nature, 392, 705-708. Hoekert, W.E.J., Neufeglise, H., Schouten, A.D., & Menken, S.B.J. (2002). Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity, 89, 107-113. Howe, M., FitzSimmons, N.N., Limpus, C.J., & Clegg, S.M. (2018). Multiple paternity in a Pacific marine turtle population: maternal attributes, offspring outcomes and demographic inferences. Marine Biology, 165, 2. https://doi.org/10.1007/s00227-017-3258-y. Jensen, M., Abreu-Grobois, F., Frydenberg, J., & Loeschcke, V. (2006). Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Molecular Ecology, 15(9), 2567-2575. Joseph, J., & Shaw, P.W. (2011). Multiple paternity in egg clutches of hawksbill turtles (Eretmochelys imbricata). Conservation Genetics, 12(2), 601-605. Ireland, J.S., Broderick, A.C., Glen, F., Godley, B.J., Hays, G.C., Lee, P.L.M., & Skibinski, D.O.F. (2003). Multiple paternity assessed using microsatellite markers, in green turtles Chelonia mydas (Linnaeus, 1758) of Ascension Island, South Atlantic. Journal of Experimental Marine Biology and Ecology, 291(2), 149-160. Kamezaki, N., Matsuzawa, Y., Abe, O., Asakawa, H., Fujii, T., Goto, K., Hagino, S., Hayami, M., Ishii, M., Iwamoto, T., et al. (2003). Loggerhead turtle nesting in Japan. In: Bolten, A.B., Witherington, B.E. (Eds.), Loggerhead Sea Turtles. Smithsonian Books Press, Washington D.C., pp. 210-217. Kamezaki, N., & Matsui, M. (1997). A review of biological studies on sea turtles in Japan. Japanese Journal of Herpetology, 17(1), 16-32. Kichler, K., Holder, M.T., Davis, S.K., Marquez, M.R., & Owens, D.W. (1999). Detection of multiple paternity in Kemp's Ridley sea turtle with limited sampling. Molecular Ecology, 8(5), 819-830. Lasala, J.A. (2011). Multiple paternity of Caretta caretta within the northwestern Atlantic Ocean population on Wassaw Island, GA. MSc thesis, Georgia Southern University, Statesboro, Georgia. Lasala, J.A., Harrison, J.S., Williams, K.L., & Rostal, D.C. (2013). Strong male-biased operational sex ratio in a breeding population of loggerhead turtles (Caretta caretta) inferred by paternal genotype reconstruction analysis. Ecology and Evolution, 3(14), 4736-4747. Lasala, J.A., Hughes, C.R., & Wyneken, J. (2018). Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida. PLoS One, 13(1), e0191615. https://doi.org/ 10.1371/journal.pone.0191615. Lee, P.L.M., & Hays, G.C. (2004). Polyandry in a marine turtle: females make the best of a bad job. Proceedings of the National Academy of Science of the United States of America, 101(17), 6530-6535. Lewison, R.L., Crowder, L.B., 2007. Putting longline bycatch of sea turtles into perspective. Conserv. Biol. 21 (1), 79-86. Long, C.A. (2013). Testing for indirect benefits of polyandry in the Florida green turtle. MSc thesis, University of Central Florida, Orlando, FL, USA. Mitchell NJ, & Janzen FJ. (2010). Temperature-dependent sex determination and contemporary climate change. Sexual Development, 4, 129-140. Montgomery, M.E., Woodworth, L.M., Nurthen, R.K., Gilligan, D.M., Briscoe, D.A., & Frankham, R. (2000). Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions. Conservation Genetics, 1, 33-43. Moore, M.K., & Ball, Jr., R.M. (2002). Multiple paternity in loggerhead turtle (Caretta caretta) nests on Melbourne Beach, Florida: a microsatellite analysis. Molecular Ecology, 11(2), 281-288. Peckham, S.H., Diaz, D.M., Walli, A., Ruiz, G., Crowder, L.B., & Nichols, W.J. (2007). Small scale fisheries by catch jeopardizes endangered loggerhead turtles. PLoS One, 2, e1041. Phillips, K.P., Mortimer, J.A., Jolliffe, K.G., Jolliffe, S.-M., Hodgkiss, R.D., McClelland, J.H.R., & Liljevik, A. (2017). Season-long sperm storage and no multiple paternity in green turtles (Chelonia mydas) nesting on Cousine Island, Seychelles. Marine Turtle Newsletter, 154, 6-11. Phillips, K.P., Jorgensen, T.H., Jolliffe, K.G., Jolliffe, S., Henwood, J., & Richardson, D.S. (2013). Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle. Molecular Ecology, 22(8), 2301-2312. Sakaoka, K., Sakai, F., Yoshii, M., Okamoto, H., & Nagasawa, K. (2013). Estimation of sperm storage duration in captive loggerhead turtles (Caretta caretta). Journal of Experimental Marine Biology and Ecology, 439, 136-142. Sakaoka, K., Yoshii, M., Okamoto, H., Sakai, F., and Nagasawa, K. (2011). Sperm utilization patterns and reproductive success in captive loggerhead turtles (Caretta caretta). Chelonian Conservation and Biology, 10, 62-72. Sari, F., Koseler, A., & Kaska, Y. (2017). First observation of multiple paternity in loggerhead sea turtles, Caretta caretta, nesting on Dalyan Beach, Turkey. Journal of Experimental Marine Biology and Ecology, 488, 60-71. Scherer-Lorenzen, M. (2014). The functional role of biodiversity in the context of global change. In: Coomes, D.A., Burslem, D.F.R.P., & Simonson, W.D. (Eds.), Forests and Global Change. Cambridge University Press Cambridge, pp 195-237. Spotila, J.R., Reina, R.D., Steyermark, A.C., Plotkin, P.T., & Paladino, F.V. (2000). Pacific leatherback turtles face extinction. Nature, 405, 529-530. Stewart, K.R., & Dutton, P.H. (2011). Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (Dermochelys coriacea). Conservation Genetics, 12(4), 1101-1113. Stewart, K.R., & Dutton, P.H. (2014). Breeding sex ratios in adult leatherback turtles (Dermochelys coriacea) may compensate for female-biased hatchling sex ratios. PLoS One, 9, e88138. Sugg, D.W., & Chesser, R.K. (1994). Effective population sizes with multiple paternity. Genetics, 137(4), 1147-1155. Tedeschi, J.N., Mitchell, N.J., Berry, O., Whiting, S., Meekan, M., & Kennington,W.J. (2015). Reconstructed paternal genotypes reveal variable rates of multiple paternity at three rookeries of loggerhead sea turtles (Caretta caretta) in Western Australia. Australian Journal of Zoology, 62(6), 454-462. Theissinger, K., FitzSimmons, N., Limpus, C., Parmenter, C., & Phillott, A. (2009(. Mating system, multiple paternity and effective population size in the endemic flatback turtle (Natator depressus) in Australia. Conservation Genetics, 10(2), 329-346. Turkozan, O., Karaman, S., Yılmaz, C., & Beşer, N. (2019). Multiple paternity at the largest green turtle (Chelonia mydas) rookery in the Mediterranean. Regional Studies in Marine Science, 31, 100777. doi: https://doi.org/10.1016/j.rsma.2019.100777. Uller, T., & Olsson,M. (2008). Multiple paternity in reptiles: patterns and processes. Molecular Ecology, 17(11), 2566-2580. Wetterer, J.K., & Lombard, C.D. (2010). Fire ants (Hymenoptera: Formicidae) along an important sea turtle nesting beach on St. Croix, USVI. Florida Entomologist, 93(3), 449-450. Wibbels, T., Owens, D.W., & Limpus, C.J. (2000). Sexing juvenile sea turtles: is there an accurate and practical method? Chelonian Conservation and Biology, 3, 756-761. Wilbur, H.M., & Morin, P.J. (1988). Life history evolution in turtles. In: Gans, C., & Huey, R.B. (Eds.), Biology of the Reptilia Ecology B, Defense and Life History 16. Alan R. Liss, New York, NY, pp. 387-440. Witt, M.J., Hawkes, L.A., Godfrey, M.H., Godley, B.J., & Broderick, A.C. (2010). Predicting the impacts of climate change on a globally distributed species: the case of the loggerhead turtle. Journal of Experimental Biology, 213(6), 901-911. Wright, L.I., Fuller, W.J., Godley, B.J., McGowan, A., Tregenza, T., & Broderick, A.C. (2012). Reconstruction of paternal genotypes over multiple breeding seasons reveals male green turtles do not breed annually. Molecular Ecology, 21, 3625-3635. Wright, L.I., Fuller, W.J., Godley, B.J., McGowan, A., Tregenza, T., & Broderick, A.C. (2013). No benefits of polyandry to female green turtles. Behavioral Ecology, 24(4), 1022-1029. Wyneken, J., Burke, T.J., Salmon, M., & Pederson, D.K. (1988). Egg failure in natural and relocated sea turtle nests. Journal of Herpetology, 22, 88-96. Zbinden, J.A., Largiader, C.R., Leippert, F., Margaritoulis, D., & Arlettaz, R. (2007). High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles. Molecular Ecology, 16(17), 3703-3711.

Do the Female Sea Turtles Benefit from Multiple Paternity? A Review of the Frequencies of Multiple Paternity Across Sea Turtle Rookeries

Year 2019, Volume: 8 , 12 - 19, 10.12.2019

Abstract

Sea turtles are promiscuous breeders. Since it is very difficult to observe individuals of a marine species while mating and usually impossible to determine the successful mating, molecular studies provide a tool to make an inference about mating system of this species. Recent molecular studies on sea turtle mating systems have demonstrated that polyandry is much more common than polygyny in sea turtles. It is well known that multiple paternity (MP) is evident in all sea turtle populations with polyandrous mating system. Determination of frequency of MP is of great importance for understanding of mating system and population structure of endangered populations and contributes to the conservation efforts. The frequency of MP shows great inter- and intra-specific variability. But why does this frequency vary greatly within and among species? Why does a female sea turtle mate multiple times within a season? Do the females benefit from MP? To elucidate these questions, here I review the frequency of MP for sea turtles nesting around the world. Based on data for several rookeries throughout the world, there were significant differences in the frequency of MP among species (p < 0.01). The frequency of MP was statistically correlated to neither clutch size (eggs) nor female size (curved carapace length [CCL]) (p > 0.05). However, there was a moderate positive correlation between the frequency of MP and hatching success (defined as the rate of hatchlings emerging successfully from the eggs) (r2 = 0.45, p < 0.05). These findings suggest that MP, contrary to common belief, does not work in favour of larger females and does not result in increased clutch size, but hatching success increases with the increasing frequency of MP. It can be concluded from these evaluations that MP in sea turtle may have at least some benefits: increased genetic diversity and heightened offspring viability and variability.

References

  • Alfaro-Núñez, A., Jensen, M.P., & Abreu-Grobois, F.A. (2015). Does polyandry really pay off?: the effects of multiple mating and number of fathers on morphological traits and survival in clutches of nesting green turtles at Tortuguero. PeerJ, 3, p. e1112. Arden, W.R., & Kapuscinski, A.R. (2002). Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 35-49. Baer, B., & Schmid-Hempel, P. (1999). Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature, 397, 151-154. Bjorndal, K.A., Meylan, A.B., & Turner, B.J. (1983). Sea turtles nesting at Melbourne Beach, Florida, I. Size, growth and reproductive biology. Biological Conservation, 26, 65-77. Bollmer, J.L., Irwin, M.E., Rieder, J.P., & Parker, P.G. (1999). Multiple paternity in loggerhead turtle clutches. Copeia, 1999(2), 475-478. Bull, J.J. (1980). Sex determination in reptiles. Quarterly Review of Biology, 55, 3-20. Casale, P. (2015). Caretta caretta (Mediterranean Subpopulation). The IUCN Red List of Threatened Species 2015: e.T83644804A83646294. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T83644804A83646294.en. Casale, P., & Tucker, A.D. (2015). Caretta caretta. The IUCN Red List of Threatened Species 2015: e.T3897A83157651. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T3897A83157651.en. Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. Chassin-Noria, O., Macip-Ríos, R., Dutton, P.H., & Oyama, K. (2017). Multiple paternity in the East Pacific green turtle (Chelonia mydas) from the Pacific coast of Mexico. Journal of Experimental Marine Biology and Ecology, 495, 43-47. Crim, J.L., Spotila, L.D., Spotila, J.R., O’Connor, M., Reina, R., Williams, C.J., & Paladino, F.V. (2002). The leatherback turtle, Dermochelys coriacea, exhibits both polyandry and polygyny. Molecular Ecology, 11(10), 2097-2106. Duran, N., Dunbar, S.G., Escobar III, R.A., Standish, T.G. (2015). High frequency of multiple paternity in a solitary population of olive ridley sea turtles in Honduras. Journal of Experimental Marine Biology and Ecology, 463, 63-71. Ekanayake, E.M.L., Kapurusinghe, T., Saman, M.M., Rathnakumara, D.S., Samaraweera, P., Ranawana, K.B., & Rajakaruna, R.S. (2013). Paternity of green turtle (Chelonia mydas) clutches laid at Kosgoda, Sri Lanka. Herpetological Conservation and Biology, 8(1), 27-36. Figgener, C., Chacón-Chaverri, D., Jensen, M.P., & Feldhaar, H. (2016). Paternity re-visited in a recovering population of Caribbean leatherback turtles (Dermochelys coriacea). Journal of Experimental Marine Biology and Ecology, 475, 114-123. FitzSimmons, N. (1998). Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology, 7(5), 575-584. Gaos, A.R., Lewison, R.L., Liles, M.J., Henriquez, A., Chavarría, S., Yañez, I.L., Stewart, K., Frey, A., Jones, T.T., & Dutton, P.H. (2018). Prevalence of polygyny in a critically endangered marine turtle population. Journal of Experimental Marine Biology and Ecology, 506, 91-99. González-Garza, B.I., Stow, A., Sánchez-Teyer, L.F., & Zapata-Párez, O. (2015). Genetic variation, multiple paternity, and measures of reproductive success in the critically endangered hawksbill turtle (Eretmochelys imbricata). Ecology and Evolution, 5, 5758-5769. Hamann, M., Godfrey, M.H., Seminoff, J.A., Arthur, K.E., Barata, P.C.R., Bjorndal, K.A., Bolten, A.B., Broderick, A.C., Campbell, L.M., Carreras, C., et al. (2010). Global research priorities for sea turtles: informing management and conservation in the twenty-first century. Endangered Species Research, 11, 245-269. Hamann, M., Limpus, C.J., & Owens, D.W. (2003). Reproductive cycles of male and females. In: Lutz, P.L., Musick, J.A., & Wyneken, J. (Eds.), The Biology of Sea Turtles 2. CRC Press Inc., Boca Raton, FL, pp. 135-161. Harry, J.L., & Briscoe, D.A. (1988). Multiple paternity in the loggerhead turtle (Caretta caretta). Journal of Heredity, 79(2), 96-99. Hirayama, R. (1998). Oldest known sea turtle. Nature, 392, 705-708. Hoekert, W.E.J., Neufeglise, H., Schouten, A.D., & Menken, S.B.J. (2002). Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity, 89, 107-113. Howe, M., FitzSimmons, N.N., Limpus, C.J., & Clegg, S.M. (2018). Multiple paternity in a Pacific marine turtle population: maternal attributes, offspring outcomes and demographic inferences. Marine Biology, 165, 2. https://doi.org/10.1007/s00227-017-3258-y. Jensen, M., Abreu-Grobois, F., Frydenberg, J., & Loeschcke, V. (2006). Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Molecular Ecology, 15(9), 2567-2575. Joseph, J., & Shaw, P.W. (2011). Multiple paternity in egg clutches of hawksbill turtles (Eretmochelys imbricata). Conservation Genetics, 12(2), 601-605. Ireland, J.S., Broderick, A.C., Glen, F., Godley, B.J., Hays, G.C., Lee, P.L.M., & Skibinski, D.O.F. (2003). Multiple paternity assessed using microsatellite markers, in green turtles Chelonia mydas (Linnaeus, 1758) of Ascension Island, South Atlantic. Journal of Experimental Marine Biology and Ecology, 291(2), 149-160. Kamezaki, N., Matsuzawa, Y., Abe, O., Asakawa, H., Fujii, T., Goto, K., Hagino, S., Hayami, M., Ishii, M., Iwamoto, T., et al. (2003). Loggerhead turtle nesting in Japan. In: Bolten, A.B., Witherington, B.E. (Eds.), Loggerhead Sea Turtles. Smithsonian Books Press, Washington D.C., pp. 210-217. Kamezaki, N., & Matsui, M. (1997). A review of biological studies on sea turtles in Japan. Japanese Journal of Herpetology, 17(1), 16-32. Kichler, K., Holder, M.T., Davis, S.K., Marquez, M.R., & Owens, D.W. (1999). Detection of multiple paternity in Kemp's Ridley sea turtle with limited sampling. Molecular Ecology, 8(5), 819-830. Lasala, J.A. (2011). Multiple paternity of Caretta caretta within the northwestern Atlantic Ocean population on Wassaw Island, GA. MSc thesis, Georgia Southern University, Statesboro, Georgia. Lasala, J.A., Harrison, J.S., Williams, K.L., & Rostal, D.C. (2013). Strong male-biased operational sex ratio in a breeding population of loggerhead turtles (Caretta caretta) inferred by paternal genotype reconstruction analysis. Ecology and Evolution, 3(14), 4736-4747. Lasala, J.A., Hughes, C.R., & Wyneken, J. (2018). Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida. PLoS One, 13(1), e0191615. https://doi.org/ 10.1371/journal.pone.0191615. Lee, P.L.M., & Hays, G.C. (2004). Polyandry in a marine turtle: females make the best of a bad job. Proceedings of the National Academy of Science of the United States of America, 101(17), 6530-6535. Lewison, R.L., Crowder, L.B., 2007. Putting longline bycatch of sea turtles into perspective. Conserv. Biol. 21 (1), 79-86. Long, C.A. (2013). Testing for indirect benefits of polyandry in the Florida green turtle. MSc thesis, University of Central Florida, Orlando, FL, USA. Mitchell NJ, & Janzen FJ. (2010). Temperature-dependent sex determination and contemporary climate change. Sexual Development, 4, 129-140. Montgomery, M.E., Woodworth, L.M., Nurthen, R.K., Gilligan, D.M., Briscoe, D.A., & Frankham, R. (2000). Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions. Conservation Genetics, 1, 33-43. Moore, M.K., & Ball, Jr., R.M. (2002). Multiple paternity in loggerhead turtle (Caretta caretta) nests on Melbourne Beach, Florida: a microsatellite analysis. Molecular Ecology, 11(2), 281-288. Peckham, S.H., Diaz, D.M., Walli, A., Ruiz, G., Crowder, L.B., & Nichols, W.J. (2007). Small scale fisheries by catch jeopardizes endangered loggerhead turtles. PLoS One, 2, e1041. Phillips, K.P., Mortimer, J.A., Jolliffe, K.G., Jolliffe, S.-M., Hodgkiss, R.D., McClelland, J.H.R., & Liljevik, A. (2017). Season-long sperm storage and no multiple paternity in green turtles (Chelonia mydas) nesting on Cousine Island, Seychelles. Marine Turtle Newsletter, 154, 6-11. Phillips, K.P., Jorgensen, T.H., Jolliffe, K.G., Jolliffe, S., Henwood, J., & Richardson, D.S. (2013). Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle. Molecular Ecology, 22(8), 2301-2312. Sakaoka, K., Sakai, F., Yoshii, M., Okamoto, H., & Nagasawa, K. (2013). Estimation of sperm storage duration in captive loggerhead turtles (Caretta caretta). Journal of Experimental Marine Biology and Ecology, 439, 136-142. Sakaoka, K., Yoshii, M., Okamoto, H., Sakai, F., and Nagasawa, K. (2011). Sperm utilization patterns and reproductive success in captive loggerhead turtles (Caretta caretta). Chelonian Conservation and Biology, 10, 62-72. Sari, F., Koseler, A., & Kaska, Y. (2017). First observation of multiple paternity in loggerhead sea turtles, Caretta caretta, nesting on Dalyan Beach, Turkey. Journal of Experimental Marine Biology and Ecology, 488, 60-71. Scherer-Lorenzen, M. (2014). The functional role of biodiversity in the context of global change. In: Coomes, D.A., Burslem, D.F.R.P., & Simonson, W.D. (Eds.), Forests and Global Change. Cambridge University Press Cambridge, pp 195-237. Spotila, J.R., Reina, R.D., Steyermark, A.C., Plotkin, P.T., & Paladino, F.V. (2000). Pacific leatherback turtles face extinction. Nature, 405, 529-530. Stewart, K.R., & Dutton, P.H. (2011). Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (Dermochelys coriacea). Conservation Genetics, 12(4), 1101-1113. Stewart, K.R., & Dutton, P.H. (2014). Breeding sex ratios in adult leatherback turtles (Dermochelys coriacea) may compensate for female-biased hatchling sex ratios. PLoS One, 9, e88138. Sugg, D.W., & Chesser, R.K. (1994). Effective population sizes with multiple paternity. Genetics, 137(4), 1147-1155. Tedeschi, J.N., Mitchell, N.J., Berry, O., Whiting, S., Meekan, M., & Kennington,W.J. (2015). Reconstructed paternal genotypes reveal variable rates of multiple paternity at three rookeries of loggerhead sea turtles (Caretta caretta) in Western Australia. Australian Journal of Zoology, 62(6), 454-462. Theissinger, K., FitzSimmons, N., Limpus, C., Parmenter, C., & Phillott, A. (2009(. Mating system, multiple paternity and effective population size in the endemic flatback turtle (Natator depressus) in Australia. Conservation Genetics, 10(2), 329-346. Turkozan, O., Karaman, S., Yılmaz, C., & Beşer, N. (2019). Multiple paternity at the largest green turtle (Chelonia mydas) rookery in the Mediterranean. Regional Studies in Marine Science, 31, 100777. doi: https://doi.org/10.1016/j.rsma.2019.100777. Uller, T., & Olsson,M. (2008). Multiple paternity in reptiles: patterns and processes. Molecular Ecology, 17(11), 2566-2580. Wetterer, J.K., & Lombard, C.D. (2010). Fire ants (Hymenoptera: Formicidae) along an important sea turtle nesting beach on St. Croix, USVI. Florida Entomologist, 93(3), 449-450. Wibbels, T., Owens, D.W., & Limpus, C.J. (2000). Sexing juvenile sea turtles: is there an accurate and practical method? Chelonian Conservation and Biology, 3, 756-761. Wilbur, H.M., & Morin, P.J. (1988). Life history evolution in turtles. In: Gans, C., & Huey, R.B. (Eds.), Biology of the Reptilia Ecology B, Defense and Life History 16. Alan R. Liss, New York, NY, pp. 387-440. Witt, M.J., Hawkes, L.A., Godfrey, M.H., Godley, B.J., & Broderick, A.C. (2010). Predicting the impacts of climate change on a globally distributed species: the case of the loggerhead turtle. Journal of Experimental Biology, 213(6), 901-911. Wright, L.I., Fuller, W.J., Godley, B.J., McGowan, A., Tregenza, T., & Broderick, A.C. (2012). Reconstruction of paternal genotypes over multiple breeding seasons reveals male green turtles do not breed annually. Molecular Ecology, 21, 3625-3635. Wright, L.I., Fuller, W.J., Godley, B.J., McGowan, A., Tregenza, T., & Broderick, A.C. (2013). No benefits of polyandry to female green turtles. Behavioral Ecology, 24(4), 1022-1029. Wyneken, J., Burke, T.J., Salmon, M., & Pederson, D.K. (1988). Egg failure in natural and relocated sea turtle nests. Journal of Herpetology, 22, 88-96. Zbinden, J.A., Largiader, C.R., Leippert, F., Margaritoulis, D., & Arlettaz, R. (2007). High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles. Molecular Ecology, 16(17), 3703-3711.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fikret Sarı

Publication Date December 10, 2019
Published in Issue Year 2019Volume: 8

Cite

APA Sarı, F. (2019). Do the Female Sea Turtles Benefit from Multiple Paternity? A Review of the Frequencies of Multiple Paternity Across Sea Turtle Rookeries. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 8, 12-19.