Conference Paper
BibTex RIS Cite

Secondary Aging Effects in Copper - Chromium Alloy

Year 2020, Volume: 11, 154 - 158, 31.12.2020

Abstract

Copper Chromium alloys are been widely used in electrical contacts and electrical resistance electrodes for their durability during the welding process. In the welding process, the Cu-Cr alloy exposed high currents and high stamping pressure, the Cu-Cr alloys preferred in spot welding because of high electrical conductivity and high strength. In this study, it is aimed to increase mechanical strength more to restrain the plastic deformation of Cu-Cr alloys during welding. At least 1 % Cr containing spot welding tips of Cu-Cr alloys were treated for aging and secondary aging conditions. Secondary aging heat treatment processes are applied mostly to Aluminum alloys. In this study, the Cu-Cr alloy samples were aged at 650 oC for 4 hours. Secondary aging treatment was done at 400 oC for 2,4, and 6 hours. The maximum hardness value of Cu-Cr alloys was secondarily aged at 400 oC for 6 hours which was 10 % higher than the sample aged at 650 oC for 4 hours

References

  • Association, C. D. (2018) Publications Retrieved from https://www.copper.org/publications/newsletters/ discover/ 2010/August
  • Chakrabarti, D., & Laughlin, D. (1984). The Cr-Cu (chromium-copper) system. Bulletin of Alloy Phase Diagrams, 5(1), 59-68.
  • Davis, J. R. (2001). Copper and copper alloys: ASM international.
  • Durashevich, G., Cvetkovski, V., & Jovanovich, V. (2002). Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy. Bulletin of Materials Science, 25(1), 59-62. doi:10.1007/bf02704596
  • Ellis, T. W., Kim, S. T., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Role of Age-Hardening. Journal of Materials Engineering and Performance, 4(5), 581-586. Retrieved from <Go to ISI>://WOS:A1995TF74800009
  • Gao, N., Huttunen-Saarivirta, E., Tiainen, T., & Hemmila, M. (2003). Influence of prior deformation on the age hardening of a phosphorus-containing Cu-0.61wt.%Cr alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 342(1-2), 270-278. Retrieved from <Go to ISI>://WOS:000179568900031
  • Kim, S. T., Berge, P. M., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Optimizing Strength and Conductivity. Journal of Materials Engineering and Performance, 4(5), 573-580. Retrieved from <Go to ISI>://WOS:A1995TF74800008
  • Krishna, S. C., Rao, G. S., Jha, A. K., Pant, B., & George, K. M. (2015). Analysis of Phases and Their Role in Strengthening of Cu-Cr-Zr-Ti Alloy. Journal of Materials Engineering and Performance, 24(6), 2341-2345. Retrieved from <Go to ISI>://WOS:000354890800022
  • Lipowsky, H., Arpaci, E. . (2007). Copper in the automotive industry. Germany: WILEY-VCH Verlag GmbH & Co. KGaA.
  • Raghavan, R., Harzer, T. P., Djaziri, S., Hieke, S. W., Kirchlechner, C., & Dehm, G. (2017). Maintaining strength in supersaturated copper-chromium thin films annealed at 0.5 of the melting temperature of Cu. Journal of Materials Science, 52(2), 913-920. Retrieved from <Go to ISI>://WOS:000387227300023
  • Schlesinger Mark E., K. M. J., SoleKathryn C., Davenport William G.I. (2011). Extractive Metallurgy of Copper (5th Edition ed.): Elsevier.
  • Sun, S. J., Sakai, S., & Suzuki, H. G. (2001). Effect of alloying elements on the cold deformation behavior of Cr phase and the tensile strength of Cu-15Cr based in situ composites. Materials Transactions, 42(6), 1007-1014. Retrieved from <Go to ISI>://WOS:000169993000015
  • Wang, Z. Q., Zhong, Y. B., Cao, G. H., Wang, C., Wang, J., Ren, W. L., . . . Ren, Z. M. (2009). Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 479(1-2), 303-306. Retrieved from <Go to ISI>://WOS:000267063300075
Year 2020, Volume: 11, 154 - 158, 31.12.2020

Abstract

References

  • Association, C. D. (2018) Publications Retrieved from https://www.copper.org/publications/newsletters/ discover/ 2010/August
  • Chakrabarti, D., & Laughlin, D. (1984). The Cr-Cu (chromium-copper) system. Bulletin of Alloy Phase Diagrams, 5(1), 59-68.
  • Davis, J. R. (2001). Copper and copper alloys: ASM international.
  • Durashevich, G., Cvetkovski, V., & Jovanovich, V. (2002). Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy. Bulletin of Materials Science, 25(1), 59-62. doi:10.1007/bf02704596
  • Ellis, T. W., Kim, S. T., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Role of Age-Hardening. Journal of Materials Engineering and Performance, 4(5), 581-586. Retrieved from <Go to ISI>://WOS:A1995TF74800009
  • Gao, N., Huttunen-Saarivirta, E., Tiainen, T., & Hemmila, M. (2003). Influence of prior deformation on the age hardening of a phosphorus-containing Cu-0.61wt.%Cr alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 342(1-2), 270-278. Retrieved from <Go to ISI>://WOS:000179568900031
  • Kim, S. T., Berge, P. M., & Verhoeven, J. D. (1995). Deformation-Processed Copper-Chromium Alloys - Optimizing Strength and Conductivity. Journal of Materials Engineering and Performance, 4(5), 573-580. Retrieved from <Go to ISI>://WOS:A1995TF74800008
  • Krishna, S. C., Rao, G. S., Jha, A. K., Pant, B., & George, K. M. (2015). Analysis of Phases and Their Role in Strengthening of Cu-Cr-Zr-Ti Alloy. Journal of Materials Engineering and Performance, 24(6), 2341-2345. Retrieved from <Go to ISI>://WOS:000354890800022
  • Lipowsky, H., Arpaci, E. . (2007). Copper in the automotive industry. Germany: WILEY-VCH Verlag GmbH & Co. KGaA.
  • Raghavan, R., Harzer, T. P., Djaziri, S., Hieke, S. W., Kirchlechner, C., & Dehm, G. (2017). Maintaining strength in supersaturated copper-chromium thin films annealed at 0.5 of the melting temperature of Cu. Journal of Materials Science, 52(2), 913-920. Retrieved from <Go to ISI>://WOS:000387227300023
  • Schlesinger Mark E., K. M. J., SoleKathryn C., Davenport William G.I. (2011). Extractive Metallurgy of Copper (5th Edition ed.): Elsevier.
  • Sun, S. J., Sakai, S., & Suzuki, H. G. (2001). Effect of alloying elements on the cold deformation behavior of Cr phase and the tensile strength of Cu-15Cr based in situ composites. Materials Transactions, 42(6), 1007-1014. Retrieved from <Go to ISI>://WOS:000169993000015
  • Wang, Z. Q., Zhong, Y. B., Cao, G. H., Wang, C., Wang, J., Ren, W. L., . . . Ren, Z. M. (2009). Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 479(1-2), 303-306. Retrieved from <Go to ISI>://WOS:000267063300075
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bedri Baksan

Ibrahim Celıkyurek

Osman Torun

Publication Date December 31, 2020
Published in Issue Year 2020Volume: 11

Cite

APA Baksan, B., Celıkyurek, I., & Torun, O. (2020). Secondary Aging Effects in Copper - Chromium Alloy. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 11, 154-158.