Research Article
BibTex RIS Cite

Enhancement the Biological Behavior of Titanium Dental Implants by Laser Pulses Treatment

Year 2021, Volume: 13 , 20 - 36, 31.12.2021
https://doi.org/10.55549/epstem.1038415

Abstract

The long-term success of dental implants largely depends on rapid healing with safe integration into the jaw bone. Geometry and surface topography are crucial for the short and long-term success of dental implants. This work aim to enhancing clinical performance of titanium dental implants by laser Pulses treatment to provide bone in a faster and improved osseointegration process. The results show that using different manufacturing processes (machining and powder technology) produced topographical differences. The topographical change observed from powder technology method was more than the machined one. Also Strong titanium oxide layer was observed after laser pulsed resulted in improving surface roughness and topography and it was the method of choice for complex surface geometries providing energy focused on one spot especially in the inside of implant thread. The release of Ti ion rise in first three days and after that released of Ti ions begins to stabilize after laser treatment. Finally, the histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance and the appearance of mature bone was observed after laser treatments at short implantation periods.

References

  • Sul, Y. T., Johansson, C., Wennerberg, A., Cho, L. R., Chang, B. S., & Albrektsson, T. (2005). Optimum Surface Properties of Oxidized Implants for Reinforcement of Osseointeg ration: Surface Chemistry, Oxide Thickness, Porosity, Roughness, and Crystal Structure. International Journal of Oral & Maxillofacial Implants, 20(3).
  • Al-Hasani, F. J. (2020). Evaluation of Surface Roughness and Biological Behavior of Ti-Nb Alloys. Journal of Mechanical Engineering Research and Developments, 43(7), 233-241.
  • Kilpadi, D. V., & Lemons, J. E. (1994). Surface energy characterization of unalloyed titanium implants. Journal of biomedical materials research, 28(12), 1419-1425.
  • Al-Hasani, F. J. (2020). Effect of Cobalt Addition on the Cytotoxicity and Cell Attachment of Titanium Alloys. Systematic Reviews in Pharmacy, 11(5), 804-813.
  • Cooper, L. F. (2000). A role for surface topography in creating and maintaining bone at titanium endosseous implants. The Journal of prosthetic dentistry, 84(5), 522-534.
  • Frenkel, S. R., Simon, J., Alexander, H., Dennis, M., & Ricci, J. L. (2002). Osseointegration on metallic implant surfaces: effects of microgeometry and growth factor treatment. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 63(6), 706-713.
  • Cochran, D. L. (1999). A comparison of endosseous dental implant surfaces. Journal of periodontology, 70(12), 1523-1539.
  • Eriksson, C., Lausmaa, J., & Nygren, H. (2001). Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials, 22(14), 1987-1996.
  • Bäuerle, D. (2013). Laser processing and chemistry. Springer Science & Business Media.
  • Palmquist, A., Lindberg, F., Emanuelsson, L., Brånemark, R., Engqvist, H., & Thomsen, P. (2010). Biomechanical, histological, and ultrastructural analyses of laser micro‐and nano‐structured titanium alloy implants: A study in rabbit. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(4), 1476-1486.
  • Cernavin, I., & Hogan, S. P. (1999). The effects of the Nd: Y AG laser on amalgan dental restorative material. Australian dental journal, 44(2), 98-102.
  • Daikuzono, N., & Joffe, S. N. (1985). Artificial sapphire probe for contact photocoagulation and tissue vaporization with the Nd: YAG laser. Medical Instrumentation, 19(4), 173-178.
  • Bereznai, M., Pelsöczi, I., Tóth, Z., Turzo, K., Radnai, M., Bor, Z., & Fazekas, A. (2003). Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials, 24(23), 4197-4203.
  • Trtica, M., Gakovic, B., Batani, D., Desai, T., Panjan, P., & Radak, B. (2006). Surface modifications of a titanium implant by a picosecond Nd: YAG laser operating at 1064 and 532 nm. Applied Surface Science, 253(5), 2551-2556.
  • Faeda, R. S., Tavares, H. S., Sartori, R., Guastaldi, A. C., & Marcantonio Jr, E. (2009). Evaluation of titanium implants with surface modification by laser beam: biomechanical study in rabbit tibias. Brazilian oral research, 23, 137-143.
Year 2021, Volume: 13 , 20 - 36, 31.12.2021
https://doi.org/10.55549/epstem.1038415

Abstract

References

  • Sul, Y. T., Johansson, C., Wennerberg, A., Cho, L. R., Chang, B. S., & Albrektsson, T. (2005). Optimum Surface Properties of Oxidized Implants for Reinforcement of Osseointeg ration: Surface Chemistry, Oxide Thickness, Porosity, Roughness, and Crystal Structure. International Journal of Oral & Maxillofacial Implants, 20(3).
  • Al-Hasani, F. J. (2020). Evaluation of Surface Roughness and Biological Behavior of Ti-Nb Alloys. Journal of Mechanical Engineering Research and Developments, 43(7), 233-241.
  • Kilpadi, D. V., & Lemons, J. E. (1994). Surface energy characterization of unalloyed titanium implants. Journal of biomedical materials research, 28(12), 1419-1425.
  • Al-Hasani, F. J. (2020). Effect of Cobalt Addition on the Cytotoxicity and Cell Attachment of Titanium Alloys. Systematic Reviews in Pharmacy, 11(5), 804-813.
  • Cooper, L. F. (2000). A role for surface topography in creating and maintaining bone at titanium endosseous implants. The Journal of prosthetic dentistry, 84(5), 522-534.
  • Frenkel, S. R., Simon, J., Alexander, H., Dennis, M., & Ricci, J. L. (2002). Osseointegration on metallic implant surfaces: effects of microgeometry and growth factor treatment. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 63(6), 706-713.
  • Cochran, D. L. (1999). A comparison of endosseous dental implant surfaces. Journal of periodontology, 70(12), 1523-1539.
  • Eriksson, C., Lausmaa, J., & Nygren, H. (2001). Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials, 22(14), 1987-1996.
  • Bäuerle, D. (2013). Laser processing and chemistry. Springer Science & Business Media.
  • Palmquist, A., Lindberg, F., Emanuelsson, L., Brånemark, R., Engqvist, H., & Thomsen, P. (2010). Biomechanical, histological, and ultrastructural analyses of laser micro‐and nano‐structured titanium alloy implants: A study in rabbit. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(4), 1476-1486.
  • Cernavin, I., & Hogan, S. P. (1999). The effects of the Nd: Y AG laser on amalgan dental restorative material. Australian dental journal, 44(2), 98-102.
  • Daikuzono, N., & Joffe, S. N. (1985). Artificial sapphire probe for contact photocoagulation and tissue vaporization with the Nd: YAG laser. Medical Instrumentation, 19(4), 173-178.
  • Bereznai, M., Pelsöczi, I., Tóth, Z., Turzo, K., Radnai, M., Bor, Z., & Fazekas, A. (2003). Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials, 24(23), 4197-4203.
  • Trtica, M., Gakovic, B., Batani, D., Desai, T., Panjan, P., & Radak, B. (2006). Surface modifications of a titanium implant by a picosecond Nd: YAG laser operating at 1064 and 532 nm. Applied Surface Science, 253(5), 2551-2556.
  • Faeda, R. S., Tavares, H. S., Sartori, R., Guastaldi, A. C., & Marcantonio Jr, E. (2009). Evaluation of titanium implants with surface modification by laser beam: biomechanical study in rabbit tibias. Brazilian oral research, 23, 137-143.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emad S. Al-hassanı

Fatimah J.al-hasanı

Early Pub Date December 31, 2021
Publication Date December 31, 2021
Published in Issue Year 2021Volume: 13

Cite

APA Al-hassanı, E. S., & J.al-hasanı, F. (2021). Enhancement the Biological Behavior of Titanium Dental Implants by Laser Pulses Treatment. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 13, 20-36. https://doi.org/10.55549/epstem.1038415