Conference Paper
BibTex RIS Cite

Quantum Chemical Calculations of 2-Methoxy-4-[(3-p-Methylbenzyl-4,5-Dihydro-1H-1,2,4-Trıazol-5-One-4-YL)Azomethine] Phenyl-2-Methylbenzoate Molecule

Year 2021, Volume: 15 , 10 - 20, 31.12.2021

Abstract

2-Methoxy-4-[(3-p-methylbenzyl-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl) azomethine] phenyl-2-methylbenzoate was optimized by using Density Functional Theory (DFT/B3LYP, B3PW91) methods (Frisch et al., 2009; Wolinski et. al., 1990). 1H-NMR and 13C-NMR isotropic shift values were calculated by the method of GIAO using the program package Gaussian G09 (Wolinski et al., 1990). Theoretical and experimental values were inserted into the grafic according to equatation of δ exp=a+b. δ calc. Experimental data obtained from the literature (Yüksek et al., 2018). The standard error values were found via SigmaPlot program with regression coefficient of a and b constants. Furthermore, the veda4f program was used in defining of IR data theoretically (Jamróz, 2004). Theoretically calculated IR data are multiplied with appropriate adjustment factors (Merrick et al., 2007) and the data obtained according to DFT(B3LYP, B3PW91) method are formed using theoretical infrared spectrum. Also, dipole moments, the HOMO-LUMO energy, ΔEg, total energy of the molecule, bond lengths and Mulliken charges, the molecular surfaces such as molecular electrostatic potential (MEP) and MEP contour maps, the total density, the electron density and the electrostatic potential were calculated with same method and functions.

References

  • Beytur, M., & Avinca, I. (2021). Molecular, Electronic, Nonlinear Optical and Spectroscopic Analysis of Heterocyclic 3-Substituted-4-(3-methyl-2-thienylmethyleneamino)-4, 5-dihydro-1H-1, 2, 4-triazol-5-ones: Experiment and DFT Calculations. Heterocyclic Communications, 27(1), 1-16.
  • Chu, X. M., Wang, C., Wang, W. L., Liang, L. L., Liu, W., Gong, K. K., & Sun, K. L. (2019). Triazole derivatives and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 166, 206-223.
  • Fan, Y. L., Cheng, X. W., Wu, J. B., Liu, M., Zhang, F. Z., Xu, Z., & Feng, L. S. (2018). Antiplasmodial and antimalarial activities of quinolone derivatives: an overview. European Journal of Medicinal Chemistry, 146, 1-14.
  • Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science, 218(4574), 747-754.
  • Hashem, A. I., Youssef, A. S., Kandeel, K. A., & Abou-Elmagd, W. S. (2007). Conversion of some 2 (3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity. European Journal of Medicinal Chemistry, 42(7), 934-939.
  • Ikizler, A. A., Ikizler, A., Yüksek, H., & Serdar, M. (1998). Antitumor activities of some 4, 5-dihydro-1H-1, 2, 4-triazol-5-ones. Model. Measur. Control, Ser. C, 1, 25-33.
  • Jamróz, M. H. (2004). Vibrational Energy Distribution Analysis. VEDA 4 Program.
  • Jarrahpour, A., Shirvani, P., Sharghi, H., Aberi, M., Sinou, V., Latour, C., & Brunel, J. M. (2015). Synthesis of novel mono-and bis-Schiff bases of morpholine derivatives and the investigation of their antimalarial and antiproliferative activities. Medicinal Chemistry Research, 24(12), 4105-4112.
  • Kotan, G., & Kardaş, F. Structural and theoretical study based on DFT calculations of 3-Methyl-4-[3-ethoxy-(2-p-metilbenzenesulfonyloxy)-benzylidenamino]-4, 5-dihydro-1H-1, 2, 4-triazol-5-one. International Journal of Chemistry and Technology, 5(1), 42-51.
  • Kotan, G., Gökce, H., Akyıldırım, O., Yüksek, H., Beytur, M., Manap, S., & Medetalibeyoğlu, H. (2020). Synthesis, Spectroscopic and Computational Analysis of 2-[(2-Sulfanyl-1 H-benzo [d] imidazol-5-yl) iminomethyl] phenyl Naphthalene-2-sulfonate. Russian Journal of Organic Chemistry, 56(11), 1982-1994.
  • Merrick, J. P., Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry, 111(45), 11683-11700.
  • Mulliken, R. S. (1955). Electronic population analysis on LCAO–MO molecular wave functions. I. The Journal of Chemical Physics, 23(10), 1833-1840.
  • Murtaza, S., Akhtar, M. S., Kanwal, F., Abbas, A., Ashiq, S., & Shamim, S. (2017). Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. Journal of Saudi Chemical Society, 21, 359-S372.
  • Nilkanth, P. R., Ghorai, S. K., Sathiyanarayanan, A., Dhawale, K., Ahamad, T., Gawande, M. B., & Shelke, S. N. (2020). Synthesis and Evaluation of Anticonvulsant Activity of Some Schiff Bases of 7‐Amino‐1, 3‐dihydro‐2H‐1, 4‐benzodiazepin‐2‐one. Chemistry & Biodiversity, 17(9), 2000342.
  • Pandey, A., Rajavel, R., Chandraker, S., & Dash, D. (2012). Synthesis of Schiff bases of 2-amino-5-aryl-1, 3, 4-thiadiazole and its analgesic, anti-inflammatory and anti-bacterial activity. E-Journal of Chemistry, 9(4), 2524-2531.
  • Puchtler, H., & Meloan, S. N. (1981). On Schiff's bases and aldehyde-Fuchsin: A review from H. Schiff to RD Lillie. Histochemistry, 72(3), 321-332.
  • Sudha, N., Abinaya, B., Arun Kumar, R., & Mathammal, R. (2018). Synthesis, Structural, Spectral, Optical and Mechanical Study of Benzimidazolium Phthalate crystals for NLO Applications. Journal of Lasers Optics & Photonics, 5(2), 1-6.
  • Uddin, N., Rashid, F., Ali, S., Tirmizi, S. A., Ahmad, I., Zaib, S., ... & Haider, A. (2020). Synthesis, characterization, and anticancer activity of Schiff bases. Journal of Biomolecular Structure and Dynamics, 38(11), 3246-3259.
  • Ulaş, Y. (2021). Synthesis, Spectroscopic Characterization (FT-IR, NMR, UV), NPA, NBO, NLO, Thermochemical Analysis and Molecular Docking Studies of 2-((4-hydroxyphenyl)(piperidin-1-yl) methyl) phenol. Journal of Computational Biophysics and Chemistry, 20(3), 323-335.
  • Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260.
  • Yüksek, H., Gürsoy-Kol, O., Kemer, G., Ocak, Z., & Anil, B. (2011). Synthesis and in-vitro antioxidant evaluation of some novel 4-(4-substituted) benzylidenamino-4, 5-dihydro-1H-1, 2, 4-triazol-5-ones.
  • Yüksek, H., Kutanis, O., Özdemir, G., Beytur, M., Kara, S., Gürsoy Kol, Ö., Alkan, M. (2018). Synthesis, In Vitro Antioxidant and Antimicrobial Activities of Some Novel 2-Methoxy-4-[(3-substitue-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)azomethine]phenyl 2-methylbenzoate Derivatives. Res J Pharm Biol Chem Sci, 9(4), 501-512 .
  • Yüksek, H., Özdemir, G., Manap, S., Yılmaz, Y., Kotan, G., Gürsoy-Kol, Ö., & Alkan, M. (2020). Synthesis and Investigations of Antimicrobial, Antioxidant Activities of Novel Di-[2-(3-alkyl/aryl-4, 5-dihydro-1H-1, 2, 4-triazol-5-one-4-yl)-azomethinephenyl] Isophtalates and Mannich Base Derivatives. ACTA Pharmaceutica Sciencia, 58(1).
  • Zhang, S., Xu, Z., Gao, C., Ren, Q.C., Chang, L., Lv, Z.S., Feng, L.S., 2017. Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry, 138, 501-513.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gul Kotan

Haydar Yuksek

Early Pub Date January 1, 2022
Publication Date December 31, 2021
Published in Issue Year 2021Volume: 15

Cite

APA Kotan, G., & Yuksek, H. (2021). Quantum Chemical Calculations of 2-Methoxy-4-[(3-p-Methylbenzyl-4,5-Dihydro-1H-1,2,4-Trıazol-5-One-4-YL)Azomethine] Phenyl-2-Methylbenzoate Molecule. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 15, 10-20.