Conference Paper
BibTex RIS Cite

Synthesis of Novel Aba-Type Amphiphilic Copolymers Including 2-Hydroxypropyl Propionate and N-Isobutoxymethyl Β-Alanine by Peg-Dialkoxide Initiated Hydrogen-Transfer Polymerization

Year 2021, Volume: 15 , 21 - 27, 31.12.2021
https://doi.org/10.55549/epstem.1052148

Abstract

Novel ABA-type amphiphilic copolymers were prepared using end-groups activated poly (ethylene glycol) (PEG) as an initiator of hydrogen-transfer polymerization (HTP). For this purpose, PEG with 1450 Da (PEG-1450) was treated with the equivalent amount of sodium hydride to synthesize PEG with dialkoxide end-groups, namely PEG-dialkoxide. Using the PEG-dialkoxide as a macroinitiator, base-catalysed HTP of 2-hydroxypropyl acrylate (HPA), and N-isobutoxymethyl acrylamide (BMA) were performed to achieve the novel ABA-type block copolymers. The copolymers were obtained with relatively high yields. Characterization of the ABA-type amphiphilic copolymers was carried out using FTIR and MALDI mass spectrometry. FTIR spectra of the copolymers exhibited some characteristic bands assigning to the functional groups arising from the mechanism of HTP. Molar mass distributions of the copolymers from the MALDI mass study pointed out that chain extensions by mass in each copolymer were almost equal. Hence, the MALDI mass spectra of the copolymers revealed that chain extensions of PEGs by HPA, and BMA units were successfully fulfilled.

References

  • Akiba, I., Akino, Y., Masunaga, H., & Sakurai, K. (2010, November). Self-assembly of amphiphilic block copolymers containing poly (n-octadecyl acrylate) block in aqueous solution. In IOP Conference Series: Materials Science and Engineering, 14(1), 012009. IOP Publishing.
  • Boutevin, B., David, G., & Boyer, C. (2006). Telechelic oligomers and macromonomers by radical techniques. Oligomers-Polymer Composites-Molecular Imprinting, 31-135.
  • Burguière, C., Chassenieux, C., & Charleux, B. (2003). Characterization of aqueous micellar solutions of amphiphilic block copolymers of poly (acrylic acid) and polystyrene prepared via ATRP. Toward the control of the number of particles in emulsion polymerization. polymer, 44(3), 509-518. https://doi.org/10.1016/S0032-3861(02)00811-X.
  • Çatıker, E., Güven, O., & Salih, B. (2018). Novel hydrophobic macromonomers for potential amphiphilic block copolymers. Polymer Bulletin, 75(1), 47-60.
  • Çatıker, E., Öztürk, T., Atakay, M., & Salih, B. (2019). Synthesis and characterization of novel ABA type poly (Ester-ether) triblock copolymers. Journal of Polymer Research, 26(5), 1-9. https://doi.org/10.1007/s10965-019-1778-5.
  • Çatıker, E., Öztürk, T., Atakay, M., & Salih, B. (2020). Synthesis and characterization of the ABA-type poly (ester-ether-ester) block copolymers. Journal of Macromolecular Science, Part A, 57(8), 600-609. https://doi.org/10.1080/10601325.2020.1745080.
  • Danafar, H., Rostamizadeh, K., Davaran, S., & Hamidi, M. (2014). PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril. Drug Development and Industrial Pharmacy, 40(10), 1411-1420.
  • Francolini, I., Hall-Stoodley, L., & Stoodley, P. (2020). Biofilms, Biomaterials, and Device-Related Infections. In Biomaterials Science (pp. 823-840). Academic Press.
  • Frey, H., & Ishizone, T. (2018). Living Anionic Polymerization–Part II: Further Expanding the Synthetic Versatility for Novel Polymer Architectures. Macromolecular Chemistry and Physics, 219(1), 1700567. https://doi.org/10.1002/macp.201700567.
  • He, Y., He, W., Wei, R., Chen, Z., & Wang, X. (2012). Synthesizing amphiphilic block copolymers through macromolecular azo-coupling reaction. Chemical Communications, 48(7), 1036-1038. https://doi.org/10.1039/c1cc16362k.
  • Iijima, M., Nagasaki, Y., Kato, M., & Kataoka, K. (1997). A potassium alcoholate-initiated polymerization of 2-(trialkylsiloxyethyl) methacrylate. Polymer, 38(5), 1197-1202. https://doi.org/10.1016/S0032-3861(96)00623-4.
  • Iwamura, T., Ashizawa, K., Adachi, K., & Takasaki, M. (2019). Anionic hydrogen‐transfer polymerization of N‐isopropylacrylamide under microwave irradiation. Journal of Polymer Science Part A: Polymer Chemistry, 57(24), 2415-2419.
  • Karayianni, M., & Pispas, S. (2016). Self-assembly of amphiphilic block copolymers in selective solvents. In Fluorescence Studies of Polymer Containing Systems (pp. 27-63). Springer.
  • LaRue, I., Adam, M., Zhulina, E. B., Rubinstein, M., Pitsikalis, M., Hadjichristidis, N., ... & Sheiko, S. S. (2008). Effect of the soluble block size on spherical diblock copolymer micelles. Macromolecules, 41(17), 6555-6563.
  • Lee, R. S., & Huang, Y. T. (2010). Tuning the hydrophilic–hydrophobic balance of block-graft copolymers by click strategy: synthesis and characterization of amphiphilic PCL-b-(PαN 3 CL-g-PBA) copolymers. Polymer Journal, 42(4), 304-312. https://doi.org/10.1038/pj.2010.6.
  • Levit, M., Zashikhina, N., Vdovchenko, A., Dobrodumov, A., Zakharova, N., Kashina, A., ... & Korzhikova-Vlakh, E. (2020). Bio-inspired amphiphilic block-copolymers based on synthetic glycopolymer and poly (amino acid) as potential drug delivery systems. Polymers, 12(1), 183.
  • Lunn, D. J., Discekici, E. H., Read de Alaniz, J., Gutekunst, W. R., & Hawker, C. J. (2017). Established and emerging strategies for polymer chain‐end modification. Journal of Polymer Science Part A: Polymer Chemistry, 55(18), 2903-2914. https://doi.org/10.1002/pola.28575.
  • Matyjaszewski, K. (2003). The synthesis of functional star copolymers as an illustration of the importance of controlling polymer structures in the design of new materials. Polymer international, 52(10), 1559-1565. https://doi.org/10.1002/pi.1339.
  • Quadir, M. A., Morton, S. W., Deng, Z. J., Shopsowitz, K. E., Murphy, R. P., Epps III, T. H., & Hammond, P. T. (2014). PEG–polypeptide block copolymers as pH-responsive endosome-solubilizing drug nanocarriers. Molecular Pharmaceutics, 11(7), 2420-2430.
  • Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Special Issue on Controlled/Living Polymerization. Prog. Polym. Sci, 36, 455-602.
  • Verso, F. L., & Likos, C. N. (2008). End-functionalized polymers: Versatile building blocks for soft materials. Polymer, 49(6), 1425-1434. https://doi.org/10.1016/j.polymer.2007.11.051.
  • Wang, G., Liu, Y., Xia, N., Zhou, W., Gao, Q., & Liu, S. (2017). The non-equilibrium self-assembly of amphiphilic block copolymers driven by a pH oscillator. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 808-814.
  • Yorulmaz-Avsar, S., Kyropoulou, M., Di Leone, S., Schoenenberger, C. A., Meier, W. P., & Palivan, C. G. (2019). Biomolecules turn self-assembling amphiphilic block co-polymer platforms into biomimetic interfaces. Frontiers in Chemistry, 6, 645.
  • Zarrintaj, P., Saeb, M. R., Jafari, S. H., & Mozafari, M. (2020). Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends (pp. 511-537). Elsevier.
  • Zhu, X., Fryd, M., Tran, B. D., Ilies, M. A., & Wayland, B. B. (2012). Modifying the hydrophilic–hydrophobic interface of PEG-b-PCL to increase micelle stability: preparation of PEG-b-PBO-b-PCL triblock copolymers, micelle formation, and hydrolysis kinetics. Macromolecules, 45(2), 660-665.
Year 2021, Volume: 15 , 21 - 27, 31.12.2021
https://doi.org/10.55549/epstem.1052148

Abstract

References

  • Akiba, I., Akino, Y., Masunaga, H., & Sakurai, K. (2010, November). Self-assembly of amphiphilic block copolymers containing poly (n-octadecyl acrylate) block in aqueous solution. In IOP Conference Series: Materials Science and Engineering, 14(1), 012009. IOP Publishing.
  • Boutevin, B., David, G., & Boyer, C. (2006). Telechelic oligomers and macromonomers by radical techniques. Oligomers-Polymer Composites-Molecular Imprinting, 31-135.
  • Burguière, C., Chassenieux, C., & Charleux, B. (2003). Characterization of aqueous micellar solutions of amphiphilic block copolymers of poly (acrylic acid) and polystyrene prepared via ATRP. Toward the control of the number of particles in emulsion polymerization. polymer, 44(3), 509-518. https://doi.org/10.1016/S0032-3861(02)00811-X.
  • Çatıker, E., Güven, O., & Salih, B. (2018). Novel hydrophobic macromonomers for potential amphiphilic block copolymers. Polymer Bulletin, 75(1), 47-60.
  • Çatıker, E., Öztürk, T., Atakay, M., & Salih, B. (2019). Synthesis and characterization of novel ABA type poly (Ester-ether) triblock copolymers. Journal of Polymer Research, 26(5), 1-9. https://doi.org/10.1007/s10965-019-1778-5.
  • Çatıker, E., Öztürk, T., Atakay, M., & Salih, B. (2020). Synthesis and characterization of the ABA-type poly (ester-ether-ester) block copolymers. Journal of Macromolecular Science, Part A, 57(8), 600-609. https://doi.org/10.1080/10601325.2020.1745080.
  • Danafar, H., Rostamizadeh, K., Davaran, S., & Hamidi, M. (2014). PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril. Drug Development and Industrial Pharmacy, 40(10), 1411-1420.
  • Francolini, I., Hall-Stoodley, L., & Stoodley, P. (2020). Biofilms, Biomaterials, and Device-Related Infections. In Biomaterials Science (pp. 823-840). Academic Press.
  • Frey, H., & Ishizone, T. (2018). Living Anionic Polymerization–Part II: Further Expanding the Synthetic Versatility for Novel Polymer Architectures. Macromolecular Chemistry and Physics, 219(1), 1700567. https://doi.org/10.1002/macp.201700567.
  • He, Y., He, W., Wei, R., Chen, Z., & Wang, X. (2012). Synthesizing amphiphilic block copolymers through macromolecular azo-coupling reaction. Chemical Communications, 48(7), 1036-1038. https://doi.org/10.1039/c1cc16362k.
  • Iijima, M., Nagasaki, Y., Kato, M., & Kataoka, K. (1997). A potassium alcoholate-initiated polymerization of 2-(trialkylsiloxyethyl) methacrylate. Polymer, 38(5), 1197-1202. https://doi.org/10.1016/S0032-3861(96)00623-4.
  • Iwamura, T., Ashizawa, K., Adachi, K., & Takasaki, M. (2019). Anionic hydrogen‐transfer polymerization of N‐isopropylacrylamide under microwave irradiation. Journal of Polymer Science Part A: Polymer Chemistry, 57(24), 2415-2419.
  • Karayianni, M., & Pispas, S. (2016). Self-assembly of amphiphilic block copolymers in selective solvents. In Fluorescence Studies of Polymer Containing Systems (pp. 27-63). Springer.
  • LaRue, I., Adam, M., Zhulina, E. B., Rubinstein, M., Pitsikalis, M., Hadjichristidis, N., ... & Sheiko, S. S. (2008). Effect of the soluble block size on spherical diblock copolymer micelles. Macromolecules, 41(17), 6555-6563.
  • Lee, R. S., & Huang, Y. T. (2010). Tuning the hydrophilic–hydrophobic balance of block-graft copolymers by click strategy: synthesis and characterization of amphiphilic PCL-b-(PαN 3 CL-g-PBA) copolymers. Polymer Journal, 42(4), 304-312. https://doi.org/10.1038/pj.2010.6.
  • Levit, M., Zashikhina, N., Vdovchenko, A., Dobrodumov, A., Zakharova, N., Kashina, A., ... & Korzhikova-Vlakh, E. (2020). Bio-inspired amphiphilic block-copolymers based on synthetic glycopolymer and poly (amino acid) as potential drug delivery systems. Polymers, 12(1), 183.
  • Lunn, D. J., Discekici, E. H., Read de Alaniz, J., Gutekunst, W. R., & Hawker, C. J. (2017). Established and emerging strategies for polymer chain‐end modification. Journal of Polymer Science Part A: Polymer Chemistry, 55(18), 2903-2914. https://doi.org/10.1002/pola.28575.
  • Matyjaszewski, K. (2003). The synthesis of functional star copolymers as an illustration of the importance of controlling polymer structures in the design of new materials. Polymer international, 52(10), 1559-1565. https://doi.org/10.1002/pi.1339.
  • Quadir, M. A., Morton, S. W., Deng, Z. J., Shopsowitz, K. E., Murphy, R. P., Epps III, T. H., & Hammond, P. T. (2014). PEG–polypeptide block copolymers as pH-responsive endosome-solubilizing drug nanocarriers. Molecular Pharmaceutics, 11(7), 2420-2430.
  • Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Special Issue on Controlled/Living Polymerization. Prog. Polym. Sci, 36, 455-602.
  • Verso, F. L., & Likos, C. N. (2008). End-functionalized polymers: Versatile building blocks for soft materials. Polymer, 49(6), 1425-1434. https://doi.org/10.1016/j.polymer.2007.11.051.
  • Wang, G., Liu, Y., Xia, N., Zhou, W., Gao, Q., & Liu, S. (2017). The non-equilibrium self-assembly of amphiphilic block copolymers driven by a pH oscillator. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 808-814.
  • Yorulmaz-Avsar, S., Kyropoulou, M., Di Leone, S., Schoenenberger, C. A., Meier, W. P., & Palivan, C. G. (2019). Biomolecules turn self-assembling amphiphilic block co-polymer platforms into biomimetic interfaces. Frontiers in Chemistry, 6, 645.
  • Zarrintaj, P., Saeb, M. R., Jafari, S. H., & Mozafari, M. (2020). Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends (pp. 511-537). Elsevier.
  • Zhu, X., Fryd, M., Tran, B. D., Ilies, M. A., & Wayland, B. B. (2012). Modifying the hydrophilic–hydrophobic interface of PEG-b-PCL to increase micelle stability: preparation of PEG-b-PBO-b-PCL triblock copolymers, micelle formation, and hydrolysis kinetics. Macromolecules, 45(2), 660-665.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Efkan Catıker

Temel Ozturk

Bedrettin Savas

Mehmet Atakay

Bekir Salıh

Early Pub Date January 1, 2022
Publication Date December 31, 2021
Published in Issue Year 2021Volume: 15

Cite

APA Catıker, E., Ozturk, T., Savas, B., Atakay, M., et al. (2021). Synthesis of Novel Aba-Type Amphiphilic Copolymers Including 2-Hydroxypropyl Propionate and N-Isobutoxymethyl Β-Alanine by Peg-Dialkoxide Initiated Hydrogen-Transfer Polymerization. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 15, 21-27. https://doi.org/10.55549/epstem.1052148