Conference Paper
BibTex RIS Cite

Density Functional Theory Studies of Structural Nonlinear Optic and Electronic Properties of Chalcone (E)-3-(Furan-2-Yl)-1-Phenylprop-2-en-1-one Molecule

Year 2021, Volume: 15 , 63 - 68, 31.12.2021
https://doi.org/10.55549/epstem.1055601

Abstract

In this study, the geometry optimization of Chalcone (E)-3-(Furan-2-yl)-1-Phenylprop-2-en-1-one molecule was performed at Density Functional Theory (DFT) with Becke-3-Lee-Yang-Parr (B3LYP) the hybrid functional using the 6-311++G(d,p) basis set in the gas phase. The highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy, the polarizability (α), and hyperpolarizability (β) values of title molecule were calculated DFT/B3LYP/6-311++G(d,p) method in the ground sate. The 1H and 13C NMR spectroscopy values of the molecule were calculated at DFT/B3LYP method using dıfferent basis sets such as 6-31G, 6-31+G, 6-31G(d) and 6-311+(2d,p) and the calculated 1H and 13C NMR values were compared with the experimental values in the literature. The equilibrium state (ground state) dipole moment values of the molecule were calculated as 3.33 Debye by B3LYP/6-311++ G(d,p) method. The electronic energy, dipole moment, polarizability and hyperpolarizability of the title molecule are analyzed and reported. The calculated geometric parameters (bond lengths and bond-dihedral angles) of the molecule were compared with the experimental values in the literature and they were found to be in good agreement The approximate geometry of the molecules in three dimensions was drawn in the GaussView 5.0 molecular imaging program, and all theoretical calculations were used with the Gaussian 09W package program.

References

  • Badshah, S. L., & Naeem, A. (2016). Bioactive thiazine and benzothiazine derivatives: green synthesis methods and their medicinal importance. Molecules, 21(8), 1054.
  • Becke, A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100.
  • Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3), 2155-2160.
  • de Campos‐Buzzi, F., Pereira de Campos, J., Pozza Tonini, P., Corrêa, R., Augusto Yunes, R., Boeck, P., & Cechinel‐Filho, V. (2006). Antinociceptive effects of synthetic chalcones obtained from xanthoxyline. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 339(7), 361-365.
  • Dennington, R., Keith T., Millam, J. (2009). Semichem Inc, In GaussView (Version 5). Shawnee Mission.
  • Farooq, S., Ngaini, Z., & Mortadza, N. A. (2020). Microwave‐assisted Synthesis and Molecular Docking Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents. Bulletin of the Korean Chemical Society, 41(9), 918-924.
  • Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J., & Pople, J. A. (1982). Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics, 77(7), 3654-3665.
  • Girgis, A. S., Basta, A. H., El-Saied, H., Mohamed, M. A., Bedair, A. H., & Salim, A. S. (2018). Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application. Royal Society Open Science, 5(3), 171964.
  • Herencia, F., Ferrandiz, M. L., Ubeda, A., Domínguez, J., Charris, J. E., Lobo, G. M., & Alcaraz, M. J. (1998). Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorganic & Medicinal Chemistry Letters, 8(10), 1169-1174.
  • Hsieh, C. T., Hsieh, T. J., El-Shazly, M., Chuang, D. W., Tsai, Y. H., Yen, C. T., ... & Chang, F. R. (2012). Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorganic & medicinal chemistry letters, 22(12), 3912-3915.
  • Hu, S., Zhang, S., Hu, Y., Tao, Q., & Wu, A. (2013). A new selective pyrazoline-based fluorescent chemosensor for Cu2+ in aqueous solution. Dyes and Pigments, 96(2), 509-515.
  • Kaur, N., & Kishore, D. (2013). Application of chalcones in heterocycles synthesis: synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1, 4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. Journal of Chemical Sciences, 125(3), 555-560.
  • Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R., & Duroux, J. L. (2007). Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. The Journal of Physical Chemistry A, 111(6), 1138-1145.
  • Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E., & Khan, S. R. (2003). Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. Journal of Medicinal Chemistry, 46(14), 2813-2815.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785.
  • Nielsen, S. F., Boesen, T., Larsen, M., Schønning, K., & Kromann, H. (2004). Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorganic & Medicinal Chemistry, 12(11), 3047-3054.
  • Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 22(9), 976-984.
  • Xiao, D., Xi, L., Yang, W., Fu, H., Shuai, Z., Fang, Y., & Yao, J. (2003). Size-tunable emission from 1, 3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. Journal of the American Chemical Society, 125(22), 6740-6745.
  • Vázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M., & Pineda-Contreras, A. (2015). Crystal structure of the chalcone (E)-3-(furan-2-yl)-1-phenylprop-2-en-1-one. Acta Crystallographica Section E: Crystallographic Communications, 71(2), 161-164.
Year 2021, Volume: 15 , 63 - 68, 31.12.2021
https://doi.org/10.55549/epstem.1055601

Abstract

References

  • Badshah, S. L., & Naeem, A. (2016). Bioactive thiazine and benzothiazine derivatives: green synthesis methods and their medicinal importance. Molecules, 21(8), 1054.
  • Becke, A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100.
  • Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3), 2155-2160.
  • de Campos‐Buzzi, F., Pereira de Campos, J., Pozza Tonini, P., Corrêa, R., Augusto Yunes, R., Boeck, P., & Cechinel‐Filho, V. (2006). Antinociceptive effects of synthetic chalcones obtained from xanthoxyline. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 339(7), 361-365.
  • Dennington, R., Keith T., Millam, J. (2009). Semichem Inc, In GaussView (Version 5). Shawnee Mission.
  • Farooq, S., Ngaini, Z., & Mortadza, N. A. (2020). Microwave‐assisted Synthesis and Molecular Docking Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents. Bulletin of the Korean Chemical Society, 41(9), 918-924.
  • Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J., & Pople, J. A. (1982). Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics, 77(7), 3654-3665.
  • Girgis, A. S., Basta, A. H., El-Saied, H., Mohamed, M. A., Bedair, A. H., & Salim, A. S. (2018). Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application. Royal Society Open Science, 5(3), 171964.
  • Herencia, F., Ferrandiz, M. L., Ubeda, A., Domínguez, J., Charris, J. E., Lobo, G. M., & Alcaraz, M. J. (1998). Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorganic & Medicinal Chemistry Letters, 8(10), 1169-1174.
  • Hsieh, C. T., Hsieh, T. J., El-Shazly, M., Chuang, D. W., Tsai, Y. H., Yen, C. T., ... & Chang, F. R. (2012). Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorganic & medicinal chemistry letters, 22(12), 3912-3915.
  • Hu, S., Zhang, S., Hu, Y., Tao, Q., & Wu, A. (2013). A new selective pyrazoline-based fluorescent chemosensor for Cu2+ in aqueous solution. Dyes and Pigments, 96(2), 509-515.
  • Kaur, N., & Kishore, D. (2013). Application of chalcones in heterocycles synthesis: synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1, 4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. Journal of Chemical Sciences, 125(3), 555-560.
  • Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R., & Duroux, J. L. (2007). Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. The Journal of Physical Chemistry A, 111(6), 1138-1145.
  • Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E., & Khan, S. R. (2003). Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. Journal of Medicinal Chemistry, 46(14), 2813-2815.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785.
  • Nielsen, S. F., Boesen, T., Larsen, M., Schønning, K., & Kromann, H. (2004). Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorganic & Medicinal Chemistry, 12(11), 3047-3054.
  • Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 22(9), 976-984.
  • Xiao, D., Xi, L., Yang, W., Fu, H., Shuai, Z., Fang, Y., & Yao, J. (2003). Size-tunable emission from 1, 3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. Journal of the American Chemical Society, 125(22), 6740-6745.
  • Vázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M., & Pineda-Contreras, A. (2015). Crystal structure of the chalcone (E)-3-(furan-2-yl)-1-phenylprop-2-en-1-one. Acta Crystallographica Section E: Crystallographic Communications, 71(2), 161-164.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Guventurk Ugurlu

Early Pub Date January 1, 2022
Publication Date December 31, 2021
Published in Issue Year 2021Volume: 15

Cite

APA Ugurlu, G. (2021). Density Functional Theory Studies of Structural Nonlinear Optic and Electronic Properties of Chalcone (E)-3-(Furan-2-Yl)-1-Phenylprop-2-en-1-one Molecule. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 15, 63-68. https://doi.org/10.55549/epstem.1055601