Conference Paper
BibTex RIS Cite

Effect of Secondary Aging of AA7075 Aluminum Alloy to Hardness

Year 2021, Volume: 16 , 20 - 25, 31.12.2021
https://doi.org/10.55549/epstem.1052210

Abstract

In this study, one of the major aluminum alloys AA7075 was held to obtain the maximum benefit for structural parts. Nowadays for the energy efficiency of vehicles like electric cars or aerospace vehicles weight reducing efforts are needed. To obtain lighter structures specific strengths are gaining importance. In our study, AA 7075 aluminum alloy was processed with additional heat treatment rather than T6 condition to obtain high strength. According to our previous studies, statistical methods seemed very useful to predict probable strength very precisely, for this reason, Box-Behnken Surface Response Method was used. By applying statistical methods, the artificial aging temperature and time were optimized. According to optimized temperature and time, the secondary aging heat treatment was done. In this study three T6 conditions 150, 200, and 250 oC with four treatment times, 1,2,4 and 6 hours were chosen and applied. The secondary aging temperature and time were obtained from Box-Behnken optimization study results and found as 182 oC and 2 hours were applied to all samples. As a result, after secondary aging heat treatment maximum hardness of 151 Hv was obtained from samples that aged at 150 oC, and 250 °C for 1 hour, which is almost doubled because the T6 aged sample has a hardness value of 86 Hv. This is obvious that the strength almost doubled, therefore it is possible to use sections almost half of the T6 condition samples.

References

  • Abd El-Rehim, A. F., & Mahmoud, M. A. (2013). Transient and steady state creep of age-hardenable Al-5 wt% Mg alloy during superimposed torsional oscillations. Journal of Materials Science, 48(6), 2659-2669. doi:10.1007/s10853-012-7059-x
  • Baksan, B., Çelikyürek, İ., & Kılıç, Y. (2020). Effect of secondary aging of EN AC 43200 Aluminum alloy to mechanical properties. The International Journal of Materials and Engineering Technology, 3(1), 16-20.
  • Baksan, B., Çelikyürek, İ., Taşdemir A., Torun O. (2018). Determination of parameters affecting hardness of aa7075 aluminum alloy by response surface method [Conference presentation]. 4th International Conference on Engineering and Natural Science, Kyiv, Ukraine.
  • Başer, T. (2013). Alüminyum alaşımları ve otomotiv endüstrisinde kullanımı. Mühendis ve Makina, 53(635), 51-58.
  • Buha, J., Lumley, R., & Crosky, A. (2006). Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy. J Metallurgical Materials Transactions A, 37(10), 3119-3130.
  • Kear, B. H., & National Research Council. (1993). Materials research agenda for the automotive and aircraft industries: report. National Academies Press.
  • Esmailian, M., Shakouri, M., Mottahedi, A., & Shabestari, S. G. (2015). Effect of T6 and re-aging heat treatment on mechanical properties of 7055 aluminum alloy. International Journal of Materials and Metallurgical Engineering, 9(11), 1303-1306. doi:doi.org/10.5281/zenodo.1110057
  • Vatansever, F., Ertürk, A. T., & Karabay, S. (2018). Alüminyum-Silisyum Alaşımlarının Mikroyapısal ve Mekanik Özelliklerinin T6 Isıl İşlemi ile İyileştirilmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 20(60), 797-803. doi:DOI: 10.21205/deufmd. 2018206062
  • Gül, F. (2014). AlSi10Mg Döküm Alaşımlarının Bazı Mekanik Özellikleri Üzerine İkincil Yaşlandırma İşleminin Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(1). doi:10.19113/sdufbed.97535
  • Hai, L., Ziqiao, Z., & Zhixiu, W. (2005). Investigation of secondary ageing characteristics of 7055 aluminum alloy—(Ⅱ) microstructures and fractography [J]. Rare Metal Materials and Engineering, 8.
  • Hofer, J., Wilhelm, E., & Schenler, W. (2012). Optimal lightweighting in battery electric vehicles. World Electric Vehicle Journal, 5(3), 751-762. doi:10.3390/wevj5030751
  • Koch, G., & Kolijn, D. (1979). The heat treatment of the commercial aluminum alloy 7075. J Journal of Heat Treating, 1(2), 3-14.
  • Leacock, A. G., Howe, C., Brown, D., Lademo, O.-G., & Deering, A. (2013). Evolution of mechanical properties in a 7075 Al-alloy subject to natural ageing. Materials & Design, 49, 160-167. doi:10.1016/j.matdes.2013.02.023
  • Li, J.-f., Peng, Z.-w., Li, C.-x., Jia, Z.-q., Chen, W.-j., & Zheng, Z.-q. (2008). Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Transactions of Nonferrous Metals Society of China, 18(4), 755-762. doi:10.1016/s1003-6326(08)60130-2
  • Lumley, R., Polmear, I., & Morton, A. J. (2003). Interrupted aging and secondary precipitation in aluminium alloys. J Materials Science Technology, 19(11), 1483-1490.
  • Lumley, R., Polmear, I., & Morton, A. J. (2005). Development of mechanical properties during secondary aging in aluminium alloys. J Materials Science Technology, 21(9), 1025-1032.
  • Panigrahi, S. K., & Jayaganthan, R. (2011). Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy. Journal of Alloys and Compounds, 509(40), 9609-9616. doi:10.1016/j.jallcom.2011.07.028
  • Pankade, S. B., Khedekar, D. S., & Gogte, C. L. (2018). The influence of heat treatments on electrical conductivity and corrosion performance of AA 7075-T6 aluminium alloy. Procedia Manufacturing, 20, 53-58. doi:10.1016/j.promfg.2018.02.007
  • Roth, R., Clark, J., & Kelkar, A. (2001). Automobile bodies: Can aluminum be an economical alternative to steel? Jom, 53(8), 28-32. doi:10.1007/s11837-001-0131-7
  • National Research Council. (2003). Use of Lightweight Materials in 21st Century Army Trucks. National Academies Press.Vehicles, N. R. C. C. o. M. f. L. M., & Board, N. R. C. N. M. A. (1982). Materials for Lightweight Military Combat Vehicles: Report: National Academy Press.
  • Zou, X.-l., Yan, H., & Chen, X.-h. (2017). Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment. Transactions of Nonferrous Metals Society of China, 27(10), 2146-2155. doi:10.1016/s1003-6326(17)60240-1
Year 2021, Volume: 16 , 20 - 25, 31.12.2021
https://doi.org/10.55549/epstem.1052210

Abstract

References

  • Abd El-Rehim, A. F., & Mahmoud, M. A. (2013). Transient and steady state creep of age-hardenable Al-5 wt% Mg alloy during superimposed torsional oscillations. Journal of Materials Science, 48(6), 2659-2669. doi:10.1007/s10853-012-7059-x
  • Baksan, B., Çelikyürek, İ., & Kılıç, Y. (2020). Effect of secondary aging of EN AC 43200 Aluminum alloy to mechanical properties. The International Journal of Materials and Engineering Technology, 3(1), 16-20.
  • Baksan, B., Çelikyürek, İ., Taşdemir A., Torun O. (2018). Determination of parameters affecting hardness of aa7075 aluminum alloy by response surface method [Conference presentation]. 4th International Conference on Engineering and Natural Science, Kyiv, Ukraine.
  • Başer, T. (2013). Alüminyum alaşımları ve otomotiv endüstrisinde kullanımı. Mühendis ve Makina, 53(635), 51-58.
  • Buha, J., Lumley, R., & Crosky, A. (2006). Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy. J Metallurgical Materials Transactions A, 37(10), 3119-3130.
  • Kear, B. H., & National Research Council. (1993). Materials research agenda for the automotive and aircraft industries: report. National Academies Press.
  • Esmailian, M., Shakouri, M., Mottahedi, A., & Shabestari, S. G. (2015). Effect of T6 and re-aging heat treatment on mechanical properties of 7055 aluminum alloy. International Journal of Materials and Metallurgical Engineering, 9(11), 1303-1306. doi:doi.org/10.5281/zenodo.1110057
  • Vatansever, F., Ertürk, A. T., & Karabay, S. (2018). Alüminyum-Silisyum Alaşımlarının Mikroyapısal ve Mekanik Özelliklerinin T6 Isıl İşlemi ile İyileştirilmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 20(60), 797-803. doi:DOI: 10.21205/deufmd. 2018206062
  • Gül, F. (2014). AlSi10Mg Döküm Alaşımlarının Bazı Mekanik Özellikleri Üzerine İkincil Yaşlandırma İşleminin Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(1). doi:10.19113/sdufbed.97535
  • Hai, L., Ziqiao, Z., & Zhixiu, W. (2005). Investigation of secondary ageing characteristics of 7055 aluminum alloy—(Ⅱ) microstructures and fractography [J]. Rare Metal Materials and Engineering, 8.
  • Hofer, J., Wilhelm, E., & Schenler, W. (2012). Optimal lightweighting in battery electric vehicles. World Electric Vehicle Journal, 5(3), 751-762. doi:10.3390/wevj5030751
  • Koch, G., & Kolijn, D. (1979). The heat treatment of the commercial aluminum alloy 7075. J Journal of Heat Treating, 1(2), 3-14.
  • Leacock, A. G., Howe, C., Brown, D., Lademo, O.-G., & Deering, A. (2013). Evolution of mechanical properties in a 7075 Al-alloy subject to natural ageing. Materials & Design, 49, 160-167. doi:10.1016/j.matdes.2013.02.023
  • Li, J.-f., Peng, Z.-w., Li, C.-x., Jia, Z.-q., Chen, W.-j., & Zheng, Z.-q. (2008). Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Transactions of Nonferrous Metals Society of China, 18(4), 755-762. doi:10.1016/s1003-6326(08)60130-2
  • Lumley, R., Polmear, I., & Morton, A. J. (2003). Interrupted aging and secondary precipitation in aluminium alloys. J Materials Science Technology, 19(11), 1483-1490.
  • Lumley, R., Polmear, I., & Morton, A. J. (2005). Development of mechanical properties during secondary aging in aluminium alloys. J Materials Science Technology, 21(9), 1025-1032.
  • Panigrahi, S. K., & Jayaganthan, R. (2011). Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy. Journal of Alloys and Compounds, 509(40), 9609-9616. doi:10.1016/j.jallcom.2011.07.028
  • Pankade, S. B., Khedekar, D. S., & Gogte, C. L. (2018). The influence of heat treatments on electrical conductivity and corrosion performance of AA 7075-T6 aluminium alloy. Procedia Manufacturing, 20, 53-58. doi:10.1016/j.promfg.2018.02.007
  • Roth, R., Clark, J., & Kelkar, A. (2001). Automobile bodies: Can aluminum be an economical alternative to steel? Jom, 53(8), 28-32. doi:10.1007/s11837-001-0131-7
  • National Research Council. (2003). Use of Lightweight Materials in 21st Century Army Trucks. National Academies Press.Vehicles, N. R. C. C. o. M. f. L. M., & Board, N. R. C. N. M. A. (1982). Materials for Lightweight Military Combat Vehicles: Report: National Academy Press.
  • Zou, X.-l., Yan, H., & Chen, X.-h. (2017). Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment. Transactions of Nonferrous Metals Society of China, 27(10), 2146-2155. doi:10.1016/s1003-6326(17)60240-1
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bedri Baksan

Ibrahim Celıkyurek

Adem Tasdemır

Publication Date December 31, 2021
Published in Issue Year 2021Volume: 16

Cite

APA Baksan, B., Celıkyurek, I., & Tasdemır, A. (2021). Effect of Secondary Aging of AA7075 Aluminum Alloy to Hardness. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 16, 20-25. https://doi.org/10.55549/epstem.1052210