Konferans Bildirisi
BibTex RIS Kaynak Göster

Optimization Parameter of the 1P Keys Interpolation Kernel Implemented in the Correlation Algorithm for Estimating the Fundamental Frequency of the Speech Signal

Yıl 2021, Cilt: 16 , 153 - 161, 31.12.2021
https://doi.org/10.55549/epstem.1068581

Öz

The first part of this paper describes an algorithm for estimating the fundamental frequency F0 of a speech signal, using an autocorrelation algorithm. After that, it was shown that, due to the discrete structure of the autocorrelation function, the accuracy of the fundamental frequency estimate largely depends on the sampling period TS. Then, in order to increase the accuracy of the estimation, an interpolation of the correlation function is performed. Interpolation is performed using a one parameter (1P) Keys interpolation kernel. The second part of the paper presents an experiment in which the optimization of the 1P Keys kernel parameter was performed. The experiment was performed on test Sine and Speech signals, in the conditions of ambient disturbances (N8 Babble noise, SNR = 5 to -10 dB). MSE was used as a measure of the accuracy of the fundamental frequency estimate. Kernel parameter optimization was performed on the basis of the MSE minimum. The results are presented graphically and tabularly. Finally, a comparative analysis of the results was performed. Based on the comparative analysis, the window function, in which the smallest estimation error was achieved for all ambient noise conditions, was chosen.

Kaynakça

  • De Cheveigné, A., & Kawahara, H. (2002). YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4), 1917-1930.
  • Kacha, A., Grenez, F., & Benmahammed, K. (2005). Time–frequency analysis and instantaneous frequency estimation using two-sided linear prediction. Signal Processing, 85(3), 491-503.
  • Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal processing, 29(6), 1153-1160.
  • Meijering, E., & Unser, M. (2003). A note on cubic convolution interpolation. IEEE Transactions on Image processing, 12(4), 477-479.
  • Milivojević, Z. N., & Balanesković, D. Z. (2009). Enhancement of the perceptive quality of the noisy speech signal by using of DFF-FBC algorithm. Facta universitatis-series: Electronics and Energetics, 22(3), 391-404.
  • Milivojević, Z. N., & Brodić, D. (2013). Estimation of the fundamental frequency of the speech signal compressed by mp3 algorithm. Archives of Acoustics, 363-373.
  • Milivojevic, Z., & Prlincevic, B. (2021). Estimation of the fundamental frequency of the speech signal using autocorrelation algorithm. Unitech.
  • Milivojevic, Z. N., Brodic, D. T., & Stojanovic, V. (2017). Estimation of fundamental frequency with autocorrelation algorithm. http://vtsnis.edu.rs/wp-
  • Pang, H. S., Baek, S., & Sung, K. M. (2000). Improved fundamental frequency estimation using parametric cubic convolution. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83(12), 2747-2750.
  • Qiu, L., Yang, H., & Koh, S.-N. (1995). Fundamental frequency determination based on instantaneous frequency estimation. Signal Processing, 44(2), 233-241.
  • Rabiner, L.R. and Schafer, R.W. (1978) Digital processing of speech signals. Prentice Hall.
  • Rao, P., & Barman, A. D. (2000). Speech formant frequency estimation: evaluating a nonstationary analysis method. Signal Processing, 80(8), 1655-1667.
Yıl 2021, Cilt: 16 , 153 - 161, 31.12.2021
https://doi.org/10.55549/epstem.1068581

Öz

Kaynakça

  • De Cheveigné, A., & Kawahara, H. (2002). YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4), 1917-1930.
  • Kacha, A., Grenez, F., & Benmahammed, K. (2005). Time–frequency analysis and instantaneous frequency estimation using two-sided linear prediction. Signal Processing, 85(3), 491-503.
  • Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal processing, 29(6), 1153-1160.
  • Meijering, E., & Unser, M. (2003). A note on cubic convolution interpolation. IEEE Transactions on Image processing, 12(4), 477-479.
  • Milivojević, Z. N., & Balanesković, D. Z. (2009). Enhancement of the perceptive quality of the noisy speech signal by using of DFF-FBC algorithm. Facta universitatis-series: Electronics and Energetics, 22(3), 391-404.
  • Milivojević, Z. N., & Brodić, D. (2013). Estimation of the fundamental frequency of the speech signal compressed by mp3 algorithm. Archives of Acoustics, 363-373.
  • Milivojevic, Z., & Prlincevic, B. (2021). Estimation of the fundamental frequency of the speech signal using autocorrelation algorithm. Unitech.
  • Milivojevic, Z. N., Brodic, D. T., & Stojanovic, V. (2017). Estimation of fundamental frequency with autocorrelation algorithm. http://vtsnis.edu.rs/wp-
  • Pang, H. S., Baek, S., & Sung, K. M. (2000). Improved fundamental frequency estimation using parametric cubic convolution. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83(12), 2747-2750.
  • Qiu, L., Yang, H., & Koh, S.-N. (1995). Fundamental frequency determination based on instantaneous frequency estimation. Signal Processing, 44(2), 233-241.
  • Rabiner, L.R. and Schafer, R.W. (1978) Digital processing of speech signals. Prentice Hall.
  • Rao, P., & Barman, A. D. (2000). Speech formant frequency estimation: evaluating a nonstationary analysis method. Signal Processing, 80(8), 1655-1667.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zoran Mılıvojevıc

Bojan Prlıncevıc

Natasa Savıc

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021Cilt: 16

Kaynak Göster

APA Mılıvojevıc, Z., Prlıncevıc, B., & Savıc, N. (2021). Optimization Parameter of the 1P Keys Interpolation Kernel Implemented in the Correlation Algorithm for Estimating the Fundamental Frequency of the Speech Signal. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 16, 153-161. https://doi.org/10.55549/epstem.1068581