Research Article
BibTex RIS Cite
Year 2019, Volume: 6 , 63 - 67, 25.07.2019

Abstract

References

  • Alpdoğan, S., Aydoğdu, O., Havare, A., (2013). Relativistic spinless particles in the generalized asymmetric Woods–Saxon potential. J. Phys. A: Math. Theor., 46:015301. Bayrak, O., Aciksoz, E., (2015). Corrected analytical solution of the generalized Woods–Saxon potential for arbitrary states. Phys. Scripta, 95:015302. Greene, R. L., Aldrich, C., (1976). Variational wave functions for a screened Coulomb potential. Phys. Rev. A, 14:2363. Guo, J. Y. and Sheng, Z.Q., (2005). Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry. Phys. Lett. A, 338(2): 90-96. Jia, C.-S., Liu, J-Y., Wang, P.-Quan., (2008). A new approximation scheme for the centrifugal term and the Hulthén potential. Physics Letters A 372:(27-30) 4779. Lütfüoğlu, B. C. (2018). An investigation of the bound-state solutions of the Klein-Gordon equation for the generalized Woods-Saxon potential in symmetry and pseudo-spin symmetry limits. Eur. Phys. J. Plus, 133(8): 309. Lütfüoğlu, B. C., Akdeniz, F., Bayrak, O., (2016). Scattering, bound and quasi-bound states of the generalized symmetric Woods-Saxon potential. J. of Math. Phys., 57(3): 032103. Lütfüoğlu, B. C., Lipovsky, J. and Kriz, J., (2018). Scattering of Klein-Gordon particles in the background of mixed scalar-vector generalized symmetric Woods-Saxon potential. Eur. Phys. J. plus, 133(1): 17. Panella, O., Biondini, S. and Arda, A. 2010. New exact solution of the one-dimensional Dirac equation for the Woods-Saxon potential within the effective mass case. J. Phys. A: Math. Theor.,43(32): 325302. Pekeris, C. L., (1934). The Rotation-Vibration Coupling in Diatomic Molecules. Phys. Rev. 45:98 Satchler, G. R. (1983). Direct Nuclear Reactions. Oxford, Clarendon Press. You, G. J., Zheng, F. X., Xin, X. F., (2002). solution of the relativistic Dirac-Woods-Saxon problem. Phys. Rev. A, 66(6): 062105. Zaichenko, A. K. and Ol’Khovskii, V. S., (1976). Analytic solutions of the scattering by potentials of the Eckart class. Theo. And Math. Phys., 27(2): 475-477.

The Interaction of a Charged Particle in the Generalized Woods-Saxon Potential

Year 2019, Volume: 6 , 63 - 67, 25.07.2019

Abstract

An analytical solution of any given potential
model presenting particle interaction is hot topic in physics. There are few
potential models that can be analytically solved in literature. The analytically
solvable potential models are the infinite and the finite well, the harmonic
oscillator, the Coulomb and the Kratzer potential for any angular momentum
quantum number. In this study, we examine the interaction of charged particle
in the generalized Woods-Saxon Potential with an approximation to the effective
potential by using the Hypergeometric function with physical boundary
conditions and continuity requirement of the wave function. We obtain the bound
state energy eigenvalues and corresponding wavefunction in closed form and
discuss the effect of the potential parameters on the energy eigenvalues and
corresponding eigenfunctions. 

References

  • Alpdoğan, S., Aydoğdu, O., Havare, A., (2013). Relativistic spinless particles in the generalized asymmetric Woods–Saxon potential. J. Phys. A: Math. Theor., 46:015301. Bayrak, O., Aciksoz, E., (2015). Corrected analytical solution of the generalized Woods–Saxon potential for arbitrary states. Phys. Scripta, 95:015302. Greene, R. L., Aldrich, C., (1976). Variational wave functions for a screened Coulomb potential. Phys. Rev. A, 14:2363. Guo, J. Y. and Sheng, Z.Q., (2005). Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry. Phys. Lett. A, 338(2): 90-96. Jia, C.-S., Liu, J-Y., Wang, P.-Quan., (2008). A new approximation scheme for the centrifugal term and the Hulthén potential. Physics Letters A 372:(27-30) 4779. Lütfüoğlu, B. C. (2018). An investigation of the bound-state solutions of the Klein-Gordon equation for the generalized Woods-Saxon potential in symmetry and pseudo-spin symmetry limits. Eur. Phys. J. Plus, 133(8): 309. Lütfüoğlu, B. C., Akdeniz, F., Bayrak, O., (2016). Scattering, bound and quasi-bound states of the generalized symmetric Woods-Saxon potential. J. of Math. Phys., 57(3): 032103. Lütfüoğlu, B. C., Lipovsky, J. and Kriz, J., (2018). Scattering of Klein-Gordon particles in the background of mixed scalar-vector generalized symmetric Woods-Saxon potential. Eur. Phys. J. plus, 133(1): 17. Panella, O., Biondini, S. and Arda, A. 2010. New exact solution of the one-dimensional Dirac equation for the Woods-Saxon potential within the effective mass case. J. Phys. A: Math. Theor.,43(32): 325302. Pekeris, C. L., (1934). The Rotation-Vibration Coupling in Diatomic Molecules. Phys. Rev. 45:98 Satchler, G. R. (1983). Direct Nuclear Reactions. Oxford, Clarendon Press. You, G. J., Zheng, F. X., Xin, X. F., (2002). solution of the relativistic Dirac-Woods-Saxon problem. Phys. Rev. A, 66(6): 062105. Zaichenko, A. K. and Ol’Khovskii, V. S., (1976). Analytic solutions of the scattering by potentials of the Eckart class. Theo. And Math. Phys., 27(2): 475-477.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Orhan Bayrak

Publication Date July 25, 2019
Published in Issue Year 2019Volume: 6

Cite

APA Bayrak, O. (2019). The Interaction of a Charged Particle in the Generalized Woods-Saxon Potential. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 6, 63-67.